
Shape Approximation by Developable Wrapping

ALEXANDRA ION, MICHAEL RABINOVICH, PHILIPP HERHOLZ, and OLGA SORKINE-HORNUNG,
ETH Zurich, Switzerland

place wrap result paper craft

Fig. 1. Our algorithm converts a given 3D shape into a piecewise developable surface that approximates it. We wrap the model in developable patches and
nonlinearly project the original mesh onto the developables. This makes our algorithm mesh-independent and allows users to choose the approximation
quality. Each patch in the end result can be fabricated using sheet material, e.g., paper.

We present an automatic tool to approximate curved geometries with piece-
wise developable surfaces. At the center of our work is an algorithm that
wraps a given 3D input surface with multiple developable patches, each mod-
eled as a discrete orthogonal geodesic net. Our algorithm features a global
optimization routine for effectively finding the placement of the developable
patches. After wrapping the mesh, we use these patches and a non-linear
projection step to generate a surface that approximates the original input,
but is also amendable to simple and efficient fabrication techniques thanks to
being piecewise developable. Our algorithm allows users to steer the trade-
off between approximation power and the number of developable patches
used. We demonstrate the effectiveness of our approach on a range of 3D
shapes. Compared to previous approaches, our results exhibit a smaller or
comparable error with fewer patches to fabricate.

CCS Concepts: • Computing methodologies → Mesh models; Mesh
geometry models;

Additional KeyWords and Phrases: developable surfaces, discrete differential
geometry, geodesic nets, shape modeling

ACM Reference Format:
Alexandra Ion, Michael Rabinovich, Philipp Herholz, and Olga Sorkine-
Hornung. 2020. Shape Approximation by DevelopableWrapping.ACM Trans.
Graph. 39, 6, Article 200 (December 2020), 12 pages. https://doi.org/10.1145/
3414685.3417835

Authors’ address: Alexandra Ion; Michael Rabinovich; Philipp Herholz; Olga Sorkine-
Hornung , ETH Zurich, Department of Computer Science, Universitätstrasse 6, Zurich,
8092, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0730-0301/2020/12-ART200
https://doi.org/10.1145/3414685.3417835

1 INTRODUCTION
Shapes that can be fabricated by bending or stamping sheets of
material (e.g., metal) are highly relevant to the manufacturing in-
dustry, since these fabrication processes are more energy efficient
than stretching materials. Such shapes are known as developable
surfaces, best illustrated by a sheet of paper—at any point it can
only be bent in one direction and cannot stretch or compress. Un-
fortunately, developable surfaces are difficult to design due to their
globally constrained geometry, a fact that is likely evident to anyone
trying to wrap a noncuboid-shaped gift.
In an attempt to relieve users from this difficult design problem,

various research works investigate algorithms to automatically con-
vert 3D shapes into piecewise developable representations. One
approach is to deform a given shape until it becomes developable,
i.e., until its Gaussian curvature vanishes [Wang and Tang 2004] and
creases emerge [Stein et al. 2018]. Other approaches automatically
produce individual developable strips [Massarwi et al. 2007; Mitani
and Suzuki 2004] or patches [Shatz et al. 2006] that approximate the
input shape and can be cut and assembled. Such piecewise approxi-
mation problems with individual patches are twofold: they involve
(1) locally fitting a good developable representation and (2) glob-
ally finding a good placement for the individual developables. The
aforementioned methods cover the shape locally with simple trian-
gle strips (i.e., torsal developable surfaces [Pottmann and Wallner
2001]) in a greedy manner: the placement of their developables re-
lies on prior mesh segmentation (e.g., part-based segmentation) and
subsequent decomposition into torsal patches.

In this paper, we propose a novel, fully automatic approximation
algorithm that improves on both the local and the global aspects of
the problem. Locally, we use general developable surfaces instead
of solely torsal patches, by employing discrete orthogonal geodesic
nets (DOGs) [Rabinovich et al. 2018a,b] in our algorithm. The DOG

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417835
https://doi.org/10.1145/3414685.3417835
https://doi.org/10.1145/3414685.3417835

200:2 • Ion, Rabinovich, Herholz, Sorkine-Hornung

model is known to capture both extrinsic and intrinsic deforma-
tions of developable surfaces without suffering from deformation
locking [Chapelle and Bathe 1998; Alessio 2012; Tang et al. 2016].
This model eliminates the need for combinatorial partition of the
developable surface into planar and torsal patches and results in a
better coverage, since it allows to optimize over the entire devel-
opable shape space. Globally, we determine where and how many
DOGs to place by performing a global optimization that is based on
developables, i.e., the problem at hand, rather than on more generic
mesh segmentation methods.

We demonstrate how the results of our algorithm are at least com-
parable with or better than previous methods in terms of approxi-
mation error while requiring fewer patches, which eases fabrication
(see Fig. 3). We compare our method with previous works in more
detail in Section 4.
We detail our algorithm in Section 3 and summarize it below,

as illustrated in Fig. 1. The key to our algorithm is to wrap the
input model tightly with DOGs, benefiting from their flexibility.
Finding a good initial guess of where and how many DOGs to fit is
not a trivial step. We initialize the global placement by creating an
overcomplete set of geodesics, shown in Fig. 1 (place), fromwhichwe
select a subset using a global multi-labeling graph-cut optimization.
The selected geodesics guide the placement of our DOG-fitting
optimization process (Fig. 1 wrap). Our DOG fitting is devised to
prevent over-constraining, which we achieve by first using the
geodesics alone as positional constraints and subsequently carefully
adding more constraints to wrap and extend over a larger portion
of the surface. Thanks to the DOGs’ flexibility and our surface
fitting process, we achieve a better coverage compared to torsal
patches, as shown in Fig. 10. After wrapping the mesh with DOGs,
we non-linearly project the parts of the input mesh onto the DOGs
to obtain a valid, manifold, piecewise developable representation
(Fig. 1 result), which can be fabricated (Fig. 1 paper craft).

Contributions. The contribution of this paper is a novel automatic
tool that approximates general curved surfaces by piecewise de-
velopable ones. Since we wrap the input mesh with developable
surfaces, rather than deforming it during the wrapping process, our
algorithm does not depend on information contained in the spe-
cific tessellation of the shape and is thus robust to the underlying
meshing, as we show in Fig. 20.

Our specific contributions, illustrated in Fig. 2, are as follows: We
contribute a method for fitting DOGs to general surfaces (Fig. 2a).
First, while the flexibility of DOGs has been demonstrated in the
context of editing systems with few, predefined position constraints,
we contribute a robust method to apply DOGs to automatic surface
approximation. Secondly, our method allows for granularity control
due to the global patch placement optimization (Fig. 2b). Users
can specify their desired granularity in terms of number of patches,
effectively trading approximation error for ease of assembly. Thanks
to our global patch placement being based on developables, our
algorithm results in an approximation under the given bounds.

2 RELATED WORK
We give an overview of the representative literature on modeling
and approximation with developable surfaces.

error: 2.9%
patches: 5

error: 1.8%
patches: 11

b adaptable approximation

a fitting general developables

Fig. 2. We contribute an approximation method that (a) uses general de-
velopable surfaces, i.e., discrete orthogonal geodesic nets (DOGs). These
can model surfaces that torsal patches cannot; in this example we show
3 cylindrically bent parts (signified by the green rulings) connected by a
planar part. (b) The approximation power of our method can be steered to
achieve variable granularity. Here, the bumpy shape is represented with 5
or 11 patches, consequently leading to a decrease in error, measured as the
Hausdorff distance w.r.t. the bounding box diagonal.

Modeling with developable surfaces. The mathematical study of
smooth developable surfaces is over two hundred years old [Lawrence
2011]. The past several decades have seen a significant body of work
on freeform modeling of developable surfaces, a task that requires
determining a specific representation for them that is amenable
to user control of the shape. There are several such models for
developable surfaces, each originating from different equivalent
characterizations of developables and then possibly discretized. The
representations are based, e.g., on vanishing Gaussian curvature
[Wang and Tang 2004], isometry to the plane [Grinspun et al. 2003],
or the special parameterizations admitted solely by developable sur-
faces. The latter parameterizations include conjugate ruled nets [Liu
et al. 2006; Bo and Wang 2007; Solomon et al. 2012; Tang et al. 2016;
Stein et al. 2018], orthogonal or parallel geodesic nets [Rabinovich
et al. 2018a; Wang et al. 2019], or isometric quadrangulation of a
planar domain to achieve discrete-isometric mappings [Jiang et al.
2020]. Sellán et al. [2020] focus on modeling developability of height
fields and cast it as a convex rank minimization problem.
Different models have different strengths and weaknesses, and

for the task at hand we choose different representations for the
various stages of our algorithm.

Approximating curved surfaces with developables. The methods
in [Wang and Tang 2004; Stein et al. 2018] iteratively deform an
input shape until it becomes a discrete developable surface. The
instability of the method of [Wang and Tang 2004], which minimizes
a vertex-based angle deficit objective (a measure of discrete Gaussian

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

Shape Approximation by Developable Wrapping • 200:3

curvature) is noted in [Stein et al. 2018; Zhao andXu 2006] and serves
as a motivation for the more constrained, ruling-based developable
model of [Stein et al. 2018].
In [Stein et al. 2018], the rulings are essentially encoded in the

mesh and adapted to reduce the number of developable patches.
The geometrical mesh structure emerges in their developable flow
process. Other methods that are more concerned with editing rather
than approximating with developable surfaces allow ruling direc-
tions to vary freely within an a priori defined, global combinatorial
mesh decomposition [Solomon et al. 2012; Bo and Wang 2007]. In
contrast, Schreck et al. [2015] present an interactive system that
recomputes the composition in a pre-defined fixed domain.

Decomposing shapes into torsal developable surfaces, i.e., devel-
opable surfaces with non-vanishing mean curvature everywhere
(no planar parts), is a popular approach. Mitani and Suzuki [2004]
and Liu et al. [2009] use planar quad (PQ) strips, Shatz et al. [2006]
fit circular cones, Massarwi et al. [2007] expand to generalized cones.
Note that Shatz et al. allow for cone singularities (apexes), as visible
in Fig. 3, which creates smoothness artifacts and may hinder some
fabrication processes. All these methods perform the decomposition
in a process that relies on a prior segmentation and a subsequent
parameterization. The work of [Julius et al. 2005] is similar in spirit
but decomposes the input into quasi-developable patches as opposed
to strips, and these patches are used to make shapes out of paper
and fabric.

Similar to our method, the works of [Chen et al. 1999; Pottmann
and Wallner 1999] employ developables to wrap an input surface.
However, in contrast to our approach, these works do not consider
the global nature of the problem and rather use a single ruled patch,
essentially relying on the existence of a segmentation of the input
mesh if one needs to approximate general geometries and topology.

The global placement of developable patches is nontrivial, there-
fore a number of previous works rely on user input for guidance.
Schüller et al. [2018] decompose shapes into a single spiralling
ribbon based on user-guided segmentation. Rose et al. [2007] inter-
polate arbitrary sketched boundary curves with developable surface
strips. Tang et al. [2016] demonstrate a user guided design tool
to approximate input surfaces with piecewise spline developables,
where users manually determine the initial location of each patch,
unlike our work where this process is automated.

Position of this work. We leverage the larger body of work on de-
velopable surfaces, as we detail in Section 3, which yields preferable
results of our novel approximation algorithm compared to prior
methods. Fig. 3 shows that our method produces lower error than
the methods of Mitani and Suzuki [2004] and Shatz et al. [2006]
and fewer patches. In comparison to Stein et al. [2018], our method
results in comparable error and fabricable parts. Furthermore, our
method allows for steering the number of resulting patches. We
report the root mean square (RMS) error as the metric that previous
works used.

3 METHOD
Our input is a triangle mesh, which we call the target shape for
the rest of this paper and denote by S𝑡 = (𝑉𝑡 , 𝐹). Our output is a
piecewise developable surface that approximates the target and is

n.a.

RMS:
patches:

0.0126
#33

0.0077
#35

0.0043
n.a.

Mitani & Suzuki Shatz et al. Stein et al.

0.0052
#26

Our method

Fig. 3. Compared to previous methods, our algorithm produces comparable
or lower error and fewer patches. Left to right: Mitani and Suzuki [2004],
Shatz et al. [2006], Stein et al. [2018], and our method. The root mean square
(RMS) error is computed as cited in the original papers [Cignoni et al. 1998].
We generated Stein’s bunny based on their pre-scripted example.

represented as a triangle mesh with the same connectivity, denoted
by S𝑑 = (𝑉𝑑 , 𝐹); we also output its segmentation to developable
patches. Each patch can be fabricated by simply bending a thin sheet
of material, and the entire shape can be built by joining the patches
together (Fig. 1 paper craft).

As illustrated in Fig. 4, our algorithm consists of two main steps:
(1) Approximate the target with multiple developable patches.
(2) Non-linearly project the target shape onto the patches.

At the first stage we wrap our target shape with multiple discrete
developable patches that approximate different parts of the sur-
face. This results in a set of disconnected, intersecting developable
patches (Fig. 4b), which we denote by 𝐷𝑖 . These patches alone are
not yet useful for fabrication purposes. At the second stage we com-
pute our final output S𝑑 by a special non-linear projection of S𝑡
onto the collection of developable patches (Fig. 4c). We describe our
wrapping algorithm by first explaining how we fit a single patch to
the target surface and then show how to compute the placement of
multiple patches to approximate the entire target shape.

input

wrap project to result

Fig. 4. Our algorithm receives the given target shape to approximate (left).
After wrapping it with multiple DOG patches, in this case 5 (middle), we
perform a non-linear projection step, which outputs a piecewise developable
mesh that approximates the input (right). The colors indicate the Gaussian
curvature 𝐾 , with blue being negative and red positive 𝐾 .

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

200:4 • Ion, Rabinovich, Herholz, Sorkine-Hornung

3.1 Locally fitting a single developable patch
The process of partially wrapping a target surface with a devel-
opable surface necessitates a good model for deforming developable
surfaces: one that can freely bend in arbitrary directions without
being limited by a predetermined set of rulings. Likewise, we would
like to use a model that can stretch while staying developable and is
not fixed to a predefined isometric planar shape.We use the model of
discrete orthogonal geodesic nets (DOGs) [Rabinovich et al. 2018a],
as they allow for modeling of developable surfaces without rulings.
A DOG is a mesh with regular quadrilateral grid connectivity, where
for each vertex of valence greater than 2, all angles in the vertex
star are equal.

We wrap the target locally by starting with a flat DOG sheet and
minimizing a fitting objective. Fig. 5 demonstrates that this is in itself
a nontrivial task. Modeling with DOGs, or any other discrete model
of developable surfaces, requires solving optimization problems
with many non-linear and non-convex constraints. Constraining
the positions of too many vertices of a DOG typically conflicts with
its angle constraints and results in an over-constrained problem, as
there might not be a discrete developable surface passing through
these points. As Fig. 5 shows, over-constraining a DOG typically
results in a failure in optimization. We therefore aim to find a stable
way to wrap a given target surface.

Fig. 5. Optimizing a single DOG while setting positional constraints at all
vertices at once is unstable and typically fails, resulting in a mesh that is
crumpled and also does not satisfy the DOG constraints. The dots mark the
positional constraints’ target (blue) and current (red) locations.

3.1.1 Stable patch initialization. Both the theory of smooth devel-
opable surfaces and of DOGs shows that one can always constrain a
curve on a planar sheet while deforming it isometrically [do Carmo
1976; Rabinovich et al. 2018a,b]. Moreover, if the target curve has
non-zero curvature, then this constraint is maximal, in the sense that
generally one cannot isometrically deform the sheet and constrain
much more than the points on a single curve. Motivated by this,
we use the curve-constraining flows of [Rabinovich et al. 2018b] to
first locally force a coordinate curve on a DOG patch to lie on some
isometric curve along the target mesh. Unlike the case of directly
constraining all vertices of a DOG, this can be done in a safe and
stable manner. By construction, a coordinate curve of a DOG can
be seen as a geodesic on it. Instead of fitting this geodesic to an
arbitrary isometric curve on the target, we fit it to a geodesic with
non-vanishing curvature on the target mesh (Fig. 6).

By matching a geodesic on the DOG to a geodesic on the target
we guarantee the following properties:

(1) Along the matched geodesics, the normals of the DOG patch
align with the normals of the target surface.

(2) If the target mesh is developable and the chosen geodesic on
it has non-vanishing curvature, the DOG wraps the target
perfectly.

Fig. 6 provides an illustration. Both of the above properties are
mesh-independent. The first property is a consequence of geodesics
having non-zero curvature, while the second is shown in [Fuchs
and Tabachnikov 1999]. Geodesics with vanishing curvature do not
have well defined normals, so these properties do not apply.

Fig. 6. To avoid over-constraining the initially flat DOG, we fit a geodesic in
its center (initially a straight line) to a geodesic on the target mesh. Along
the matched geodesics, the normals of the DOG align with the normals
of the target surface. If the target is developable and the geodesic has
non-vanishing curvature, the DOG patch wraps it perfectly.

3.1.2 Approximating the surface. Fitting a DOG geodesic to a spe-
cific target geodesic serves as a stable initialization. On non-developable
surfaces, this initialization can often be improved, since the fitted
patch still has some degrees of freedom. One of the biggest advan-
tages in using DOGs is the ability tomodel developable surfaces with
planar parts and multiple torsal patches, without being bounded by
a pre-determined torsal decomposition [Rabinovich et al. 2018a]. To
leverage these advantages, we continue to optimize the DOG patch,
using the following strategy.
To approximate the surface, our algorithm adds position con-

straints in the least squares sense in order to gently pull the initial-
ized patch closer to the target surface. To do so, we start from the
well approximated part, i.e., the geodesic on the center line, and it-
eratively include constraints by growing outwards on the DOG face
neighborhood after each optimization step. As Fig. 7 illustrates, this
deforms a DOG patch that initially cuts through the target surface
to be tangential to it.
The soft positional constraints 𝐶 are constructed by projecting

the target mesh vertices 𝑉𝑡 onto the DOG patch. We formulate the
soft constraints as a quadratic objective

𝐸fit (S𝑡) =
∑
𝑖∈𝑉𝑡

𝛿𝑖 ∥𝐶 (𝑖) −𝑉𝑡 (𝑖)∥2 ,

where 𝑉𝑡 (𝑖) is a vertex on S𝑡 and 𝐶 (𝑖) is the closest point on the
current DOG patch, expressed as a barycentric combination of DOG
vertices. Again, to avoid over-constraining the patch, our algorithm
only considers position constraints that are sufficiently close to the

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

Shape Approximation by Developable Wrapping • 200:5

Fig. 7. We optimize a single DOG patch further after the initial geodesic
fitting, since it often still has some degrees of freedom. To do so, we iteratively
add soft position constraints from the centerline geodesic outwards. This
leads to a better target surface approximation compared to the initialization,
where the patch was initially cutting the target surface.

current patch shape. The exclusion of outliers is performed by 𝛿𝑖 ,
which is

𝛿𝑖 =


1 if ∥𝐶 (𝑖) −𝑉𝑡 (𝑖)∥ ≤ 𝛿distance

& ⟨𝑁 (𝐶 (𝑖)), 𝑁 (𝑉𝑡 (𝑖))⟩ ≥ 𝛿normal ,

0 otherwise,

where 𝑁 (𝐶 (𝑖)) is the DOG normal at point 𝐶 (𝑖) and 𝑁 (𝑉𝑡 (𝑖)) is
the normal of the target vertex 𝑉𝑡 (𝑖). If several target vertices are
projected onto the same face of the DOG patch, we pick one that
fulfills the above criteria and set the 𝛿𝑖 of the others to zero to avoid
conflicting constraints.

3.1.3 Covering a larger surface. The length of our DOG patch is
governed by the length of the geodesic, however, its width is not
specified. When we construct the patch, we set its width to a de-
fault value, which is half the largest dimension of the target shape.
However, the DOG patch might be able to cover a larger surface
than its initial size if it is allowed to stretch (while remaining a dis-
crete developable), as shown in Fig. 8. To achieve this, we relax the
outlier threshold 𝛿distance. Additionally, we apply an energy term
that allows the DOG’s edge lengths to change while maintaining
regularity of the parameterization, as described below.

Fig. 8. To allow the patch to cover a larger surface, we relax the outlier
threshold 𝛿distance. This leads to a larger set of position constraints in 𝐸fit.

3.1.4 Optimization. Throughout the approximation, we optimize
the DOG patch using equality-constrained SQP as in [Rabinovich

et al. 2019]. We define the objective similar to [Rabinovich et al.
2018b] as a weighted sum of the terms

min 𝑤H𝐸H +𝑤edge𝐸edge +𝑤fit𝐸fit ,

s.t. DOG constraints,

where 𝐸H is the bending energy to keep the DOG patch smooth
and 𝐸fit are the soft positional constraints described above. The
term 𝐸edge regularizes the edge lengths within the DOG patch. In
the patch initialization and surface approximation step, we main-
tain isometric edges using the 𝐸edge = 𝐸iso from [Rabinovich et al.
2018b] (see Eq.(14), page 13). In the stretching step, we exchange
the isometry objective with 𝐸edge = 𝐸uni-opp, a term that allows the
DOG’s edge lengths to change, while keeping opposing edges of the
same length to control the parametrization regularity [Rabinovich
et al. 2018b] (see Eq.(15)). For all examples in this paper, we used
fixed weights of𝑤H = 6.0,𝑤edge = 1.0,𝑤fit = 1.5.

3.2 Global approximation with multiple developables
Now that we know how to fit a patch to a given part of the target
surface initialized by a geodesic, we need to find out where on the
surface we should place patches. General shapes most often are
only piecewise developable and therefore require multiple patches
to be fitted, unless they are already entirely developable. Our goal
is to cover our target surface S𝑡 with developable patches 𝐷𝑖 . More
precisely, we aim to find a set of developable patches 𝐷𝑖 such that
the Euclidean distance from each vertex of the target S𝑡 to one
of the 𝐷𝑖 ’s is smaller than some approximation threshold 𝜀 > 0.
Hence, the challenge is two-fold: we need to be able to locally wrap
an area of the target mesh with a single developable as detailed in
Section 3.1, while also globally determining the areas each patch
should cover.

Motivated by the previous section, we compute an estimate to this
problem.We sample a large set of geodesics on the target surface and
quickly estimate approximate developable surfaces for them. We use
these approximate developables to select a smaller subset that still
covers the surface up to the given approximation threshold (Fig. 9).
The corresponding geodesics then serve as the initialization for our
DOG patch fitting. We detail in the following how we compute this
subset efficiently.

3.2.1 Sampling geodesics. We sample a set of geodesics by ran-
domly selecting vertices as their starting points and tracing them
on the surface in a direction of our choice. We choose the maximum
principal curvature direction [Panozzo et al. 2010], since it leads
to geodesics with higher curvature on cylindrical or conical parts
compared to the minimum curvature direction. In fact, a geodesic
in direction of minimum curvature on developable shapes is the
ruling, i.e., has vanishing curvature and is therefore not a good
candidate to initialize a DOG patch, as discussed in Section 3.1.1.
Starting from a given vertex, we intersect a straight line in the max
principle direction with a triangle edge. Similar to the line-of-sight
algorithm for geodesics on polyhedral surfaces [Balasubramanian
et al. 2009; Polthier and Schmies 2006], we isometrically flatten the
neighboring triangle incident on the edge. We continue our line on
the neighboring triangle, maintaining the direction. By repeating

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

200:6 • Ion, Rabinovich, Herholz, Sorkine-Hornung

min E.(l.)

Fig. 9. To find where on the target we should fit DOG patches, we (left) sam-
ple a large set of geodesics, for which we (center) procedurally construct
ruled developables. (right) We select a subset of these developables to glob-
ally cover the target. Their generating geodesics are the initializations for
our DOG patches. Here, we randomly sample 20% of the 2477 vertices, and
select 4 geodesics as our initializers.

this step, we can create geodesics of arbitrary length, which means
that we need to find a meaningful stopping criterion.
Since we only sample the geodesics as stable initializers for the

DOG patches, we aim to trace geodesics that would represent smooth
developable surfaces. As such, our first criterion is to stop tracing a
geodesic once its second order normal differences deviate too much.
We detect this by an adaptive mean-shift variation, where we keep
track of the normal differences of each path segment and evaluate
whether a new normal difference exceeds a standard deviation of
3𝜎 , i.e., is an outlier, in which case we stop tracing. This ensures that
we do not trace geodesics past creases or other large dihedral angles.
Secondly, we also prevent geodesics from winding around smaller
features (e.g., the bunny’s ears) by stopping when the angle sum
of the path is > 2𝜋 . Multiple windings do not offer any additional
benefit for our DOG patches and complicate the approximation.

3.2.2 Finding a subset of initial geodesics on the target. As a next
step, we choose a smaller set of geodesics to serve as the initializers
for our DOG patches 𝐷𝑖 . We aim to select geodesics that are well
spaced across the target, such that they globally optimize for cover-
age by DOGs. Since this is merely an initialization, we only need
a rough estimate of the DOG patches to assess the coverage qual-
ity. Therefore, we efficiently create ruled developable surfaces by
passing a spline through each sampled geodesic. Using the analytic
derivates of the spline, we compute the ruled rectifying developable
that interpolates the spline [Bo and Wang 2007]. We compute the
ruling direction as the Darboux vector 𝑟 = 𝜏𝑇 +𝜅𝐵 with𝑇 being the
unit-length tangent and 𝐵 the unit binormal of the spline. Since our
splines often have inflection points, for which rulings are undefined
[do Carmo 1976], we compute the curve of regression [Pottmann
and Wallner 2001] and disregard very short rulings, as they indicate
flat parts on the curve. The resulting ruled surfaces are a very simple
representation and only serve the purpose of helping the selection
of geodesics.
To select a subset of geodesics that covers the target, we utilize

a multi-label graph cut algorithm [Boykov et al. 2001]. We opt
for this global optimization procedure since this method has been
demonstrated to be effective for similar problem definitions [Herholz
et al. 2015]. Let our randomly selected set of geodesics correspond

to the labels 𝑙𝑖 , for which we wish to find a minimizer. Our data term
𝑑 (𝑖, 𝑙𝑖) evaluates the distance from a vertex on the target 𝑖 ∈ 𝑉𝑡 to
the closest point on the ruled surface generated by the geodesic with
label 𝑙𝑖 . The smoothness term 𝑠𝑒 compares neighboring labels and
penalizes the assignment of different labels. To do so, the algorithm
traverses the edges E of the target S𝑡 and compares the labels of
the two edge vertices. Consequently, we formulate our energy as

𝐸 (𝑙) =
∑
𝑖∈𝑉𝑡

𝑑 (𝑖, 𝑙𝑖) +
∑
𝑒∈E

𝑠 (𝑒)

where 𝑠 (𝑒) =
{
0 if 𝑙 (𝑒0) = 𝑙 (𝑒1)
𝜆 otherwise.

3.2.3 Fitting DOG patches. The result of the graph cut algorithm
gives us initial locations onto which we can place our DOG patches.
We then follow the single DOG patch fitting algorithm as described
in Section 3.1, by first fitting geodesics curves (Fig. 6) and then fur-
ther optimizing and improving our approximation. Fitting DOGs,
as they are general developable surfaces, improves the coverage
compared to simple torsal patches with the same geodesics as gener-
ator curves. We show in Fig. 10 how the error is distributed on the
surface. We compute the error simply as the distances between the
target S𝑡 and the respective covering developables.

0%

5%

error
torsal patches DOG patches

Fig. 10. We confirm that fitting DOGs (right) results in a significantly better
coverage than with torsal patches (left). Here, we compare patches using
the same geodesics as initial positional constraints for the DOGs and as
generator curves for the torsal patches. The maximum distance error is 7.5%
with torsal patches and 4.2% with DOGs. The latter decreases to 3.7% as we
add another DOG to cover the top (not shown in image).

3.2.4 Cover any remaining holes. After our algorithm computes an
approximating DOG for each geodesic, we evaluate the coverage of
S𝑡 . For every vertex in 𝑉𝑡 , we measure the shortest distance to any
patch, resulting in our approximation error 𝜀. We visualize this error
in Fig. 10. Our algorithm considers every vertex with an approxima-
tion error 𝜀𝑖 > 𝜀max to be uncovered, where 𝜀max is a user-defined
threshold. We define uncovered areas as connected components
of uncovered vertices. As shown in Fig. 11, our algorithm approxi-
mates additional patches for uncovered areas using the same steps
as before, i.e., it retrieves a geodesic and fits a DOG for each area.

3.3 Non-linear projection of the target onto the patches
Our wrapping algorithm returns a set of intersecting developables
that do approximate the target, but also include extraneous parts
that need to be culled. Simply cutting these areas might still leave

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

Shape Approximation by Developable Wrapping • 200:7

Fig. 11. After fitting multiple geodesics, our algorithm evaluates uncovered
areas marked by red circles in this image. Here, the top of the Bumpy model
remained uncovered. Our algorithm adds a patch to achieve good coverage
of the target.

us with small holes, multiple connected components and a resulting
mesh with different topology than the target. Instead of introduct-
ing and subsequently repairing these topological defects, we take a
different approach: We non-linearly project the target mesh onto
the wrapping developables. Because we use the original mesh and it-
eratively project it onto the DOGs, we generate a mesh that remains
a valid manifold, and has the same combinatorics and topology as
the target mesh, but is close to the developable patches (Fig. 4c).
All our results shown in Section 4 are valid manifolds, we didn’t
encounter degenerate meshes as our output.
As a first step we label each face of the target mesh S𝑡 with the

index of a close-by DOG patch. Such a labeling induces a decompo-
sition of the mesh into connected components associated with DOG
patches. Direct projection, i.e. using the patch that is closest to face
barycenters, does not yield satifsfactory results as intersections of
DOG patches might lead to many isolated components. Therefore
we employ a graph cut based approach, similar to the one described
in Section 3.2, to obtain a labeling that is both smooth and associated
faces to spatially close DOGs. We split the faces ofS𝑡 into connected
components forming a disconnected mesh S𝑑 . As some vertices will
appear in triangles of different labels, they will be duplicated. The
non-linear projection step evolves this initial result S𝑑 towards a
piecewise developable surface. To this end we try to find vertex
positions for S𝑑 such that the following properties hold:

DOG Projection: each vertex should be close to its associated
DOG surface.

Developability: the angle defect for each interior vertex should
be very small. We use a threshold of 5 · 10−3 for the maximal
angle defect.

Smoothness: the surface should be smooth, exhibiting the least
amount of wrinkling possible.

Seam Smoothness: for aesthetic reasons and easier manufactura-
bility we would like seams between developable patches to be
as smooth as possible.

Connectedness: corresponding vertices at patch boundaries should
be colocated.

Each of these objectives is represented as a weighted term in the
compound objective function

𝐸 (S𝑑) = 𝑤angle𝐸angle +𝑤proj𝐸
𝑘
proj +𝑤L𝐸L +𝑤S𝐸S +𝑤stitch𝐸stitch,

where 𝐸angle sums the squared angle defects at inner vertices nor-
malized by vertex area and 𝐸𝑘proj sums the squared distances of each
vertex to the closest point on the DOG corresponding to its label.
Over the course of the optimization we reproject vertices onto the
DOGs, which allows them to slide over the patches; however, ver-
tices remain always associated with the same DOG. The term 𝐸stitch
sums squared distances of corresponding vertices, the pairing of
which is determined at the labelling stage. The term 𝐸L contains
a bi-Laplacian energy, encouraging a piecewise smooth solution.
Finally, the energy 𝐸S penalizes non-smooth seams. This energy
applies 1D smoothing on the seams by employing the combinatorial
Laplace operator restricted to the graph of boundary vertices N𝑖 .
Two boundary vertices, 𝑥𝑖 and 𝑥 𝑗 , are connected by an edge in this
graph if they are connected by an edge in the original mesh S𝑡 . We
formulate this energy as

𝐸S =
∑
𝑖

 ∑
𝑗 ∈N𝑖

(𝑥 𝑗 − 𝑥𝑖)

2 .

Since the objective 𝐸 (S𝑑) can be represented as a non-linear least-
squares energy, we employ the Gauss-Newton algorithm to optimize
it. To enforce developability, we use the quadratic penalty method
[Nocedal and Wright 2006], i.e., we increase the weight𝑤angle over
the course of the iterations. It is well known that optimizing for
vanishing discrete Gaussian curvature is generally unstable [Stein
et al. 2018; Zhao and Xu 2006]. However, we increase the weight
𝑤angle after the optimization has already moved the vertices close to
the DOGs, such that they describe a surface that is almost piecewise
developable.

4 RESULTS
We showcase the applicability of our algorithm on various examples.
We cover a representative set of applications, including developable
and doubly curved primitives as well as complex shapes. We indicate
the developability of our results using the discrete Gaussian cur-
vature 𝐾 on the inner vertices normalized by their vertex area. For
each result, we report the mean 𝐾mean and the absolute maximum
|𝐾 |max. We indicate the shape similarity by the Hausdorff distance
𝑑𝐻 , with respect to the length of the bounding box diagonal.

Developable shapes. First, we show in Fig. 13 (left) that our algo-
rithm approximates trivial developable shapes, such as a cylinder
and cone, smoothly. The cylinder is approximated using a single
DOG patch. Although the patch is initially only half the height of
the cylinder, the position constraints that allow for stretch enable
the approximation with one patch. The cone is represented using
two DOG patches, due to the geodesics construction. Yet, as evident
in Fig. 13 (right), both patches meet in a smooth manner, resulting
in a very good representation.

Doubly curved primitives. Doubly curved surfaces are certainly
more challenging and ambiguous to represent by developables. It is
well known that no good solution exists to approximating a sphere
with developable surfaces. As shown in Fig. 14 (left), the result of
our algorithm is akin to a tennis ball. Our algorithm also succeeds
at combinations of developable parts and doubly curved parts, as
demonstrated in Fig. 14 (right). This example also showcases the

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

200:8 • Ion, Rabinovich, Herholz, Sorkine-Hornung

Fig. 12. Approximating complex shapes by piecewise developable surfaces results in a sensible abstraction, as showcased by (left) the bumpy cube, (center) the
puppy, and (right) the face. (bumpy cube: 24 patches, 𝑑𝐻 = 1.7%, |𝐾 |max = 2.9 · 10−4, 𝐾mean = −1.8 · 10−7; puppy: 23 patches, 𝑑𝐻 = 3.3%, |𝐾 |max = 2.6 · 10−3,
𝐾mean = 3.0 · 10−5; face: 16 patches, 𝑑𝐻 = 2.2%, |𝐾 |max = 9.6 · 10−4, 𝐾mean = 1.2 · 10−5)

Fig. 13. Our algorithm creates smooth cylinders with one patch thanks
to our stretching step in the patch fitting procedure (left). Our smooth
cone consists of two patches (right), since we there are no geodesics on the
cone that would cover it due to the nature of our geodesic construction.
The seams meet smoothly. (cylinder: 1 patch, 𝑑𝐻 = 0.4%; cone: 2 patches,
𝑑𝐻 = 1.0%)

Fig. 14. We can approximate spheres (left) as well as combinations of de-
velopable and doubly curved shapes (right), here a cylinder with a hemi-
sphere. The topology of the input, as demonstrated by the hole on top,
is preserved by our non-linear projection. (sphere: 9 patches, 𝑑𝐻 = 4.1%,
|𝐾 |max = 8.3 · 10−4, 𝐾mean = 3.3 · 10−6; dome: 6 patches, 𝑑𝐻 = 1.8%,
|𝐾 |max = 1.8 · 10−4, 𝐾mean = −1.3 · 10−6)

benefit of our non-linear projection of the original mesh, in that the
hole at the top is preserved.

Complex shapes. We demonstrate the performance of our algo-
rithm on more complex examples, shown in Fig. 12. We show the
result of our algorithm for the entire bumpy cube in Fig. 12 (left).
We used one side of it to illustrate our method throughout Section 3.

Fig. 15. This architectural shell showcases the use of developable surfaces for
architectural design; we fabricated it from paper. The input shape consists
of 3551 vertices and results in 7 patches, 𝑑𝐻 = 1.8%, |𝐾 |max = 4.18 · 10−3,
𝐾mean = 6.77 · 10−6.

The bumpy cube is not a trivial example, yet our algorithm produces
a good approximation automatically. Similarly, our algorithm ap-
proximates the puppy (Fig. 12 center) and face (Fig. 12 right) models
automatically while staying close to the target shape. Developable
surfaces have applications, e.g. in architecture. We demonstrate an
architectural shell example in Fig. 15, which we also fabricated from
paper.

Steering the approximation tradeoff. Our algorithm is automatic,
yet the tradeoff between approximation error and number of patches
can be steered by the user. The goal of any developable approxi-
mation highly depends on the task or preferences: while for flank
milling a very small approximation error might be prioritized, for
large-scale or assembly-intensive tasks, such as fabrication from
sheet material (e.g., in architecture or ship building), a smaller num-
ber of patches might be desirable. Our algorithm allows steering this
tradeoff, mainly governed by the parameter 𝜆, which is the penalty
in the smoothness term of our geodesics selection (see Section 3.2.2).
Since we globally optimize the patch placement, increasing this
penalty leads to fewer patches being selected, yet their distribution
is still optimized. We demonstrate the effects of the 𝜆 penalty in

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

Shape Approximation by Developable Wrapping • 200:9

λ = 2000
dH = 6.6%
4 patches
|K |max= 8.9 ⋅10-4

λ = 500
dH = 2.2%
7 patches
|K |max= 8.9 ⋅10-4

λ = 250
dH = 2.1%
11 patches
|K |max= 8.1 ⋅10-4

Fig. 16. Our algorithm allows steering the approximation tradeoff via the
patch placement optimization. We show how increasing the penalty 𝜆 re-
duces the number of patches at the cost of higher error.

Fig. 16. This confirms that when opting for fewer patches, our al-
gorithm produces sensible abstractions. Fig. 17 showcases that the
granularity adaption performs as expected on the complex models
as well, such as the bunny.

In our experiments shown in Fig. 18, we confirm that the random
set of geodesics, if sufficiently large, does not affect the geodesic
selection substantially. For shapes with a clear best fit, like the cone,
the three different random sets lead to similar selected geodesics
and developable representation. The Lilium model has no clear best
developable fit, which results in different geodesics being selected.
Nevertheless, the selected geodesics satisfy our objective of covering
the target with the given granularity 𝜆.

4.1 Implementation
We implemented our algorithm in C++ using libigl [Jacobson et al.
2018] for geometry processing capabilities and Pardiso [De Coninck
et al. 2016; Verbosio et al. 2017; Kourounis et al. 2018] for solving
our linear systems. The results are generated on a 2.5 GHz Intel
Core i7-7660U CPU laptop with 16 GB RAM. Computation times for
the aforementioned examples lie between 2 and 9 minutes. As this
range already implies, the computation speed mainly depends on
the chosen granularity, i.e., the number of DOG patches to be fitted.
The target mesh resolution, i.e., the number of vertices, does not
significantly affect the geodesics and the DOG fitting, but it does
impact the non-linear projection step.
Note that the initialization procedure is very efficient and con-

stitutes only a small percentage of the overall timing. Tracing the

0

10-3

|K |

Fig. 17. (Top row) We show the bunny in two different granularities. The
left model has 18 patches and 𝑑𝐻 = 4.1% with |𝐾 |max = 2.5 · 10−3 and
𝐾mean = 2.5 · 10−5. The right result consists of 26 patches and 𝑑𝐻 = 2.8%,
with |𝐾 |max = 1.4 · 10−3, and𝐾mean = 7.2 · 10−6. (Bottom row) The Gaussian
curvature 𝐾 concentrates onto the resulting creases. We show the absolute
Gaussian curvature |𝐾 | in red.

Fig. 18. Each result stems form a different set of randomly sampled
geodesics. For both examples, we randomly sampled 20% of the target’s
vertices, resulting in 518 for the cone and 677 for the Lilium. We show the
random geodesics in light gray and the selected geodesics in black. We used
𝜆 = 2000 for the cone (top) and 𝜆 = 300 for the Lilium (bottom).

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

200:10 • Ion, Rabinovich, Herholz, Sorkine-Hornung

geodesics and building approximate ruled developable surfaces is
fast, since we compute analytic rulings from the splines passing
through the geodesics. The computation time for the geodesics selec-
tion via the multi-label graph cut algorithm depends on the chosen
geodesics sample size. Note that our prototype implementation cur-
rently does not utilize multi-threading. However, fitting the DOG
patches as well as tracing the geodesics is trivially parallelizable.

4.2 Discussion
Limitations. Our method is designed to approximate arbitrary

shapes, but it also exhibits some limitations. DOGs are designed to
approximate smooth surfaces and, in our algorithm, sharp creases
emerge from intersections between them. Our method is not specif-
ically optimized towards preserving sharp creases, which is evident
in the fandisk example in Fig. 19. While sharp creases do emerge,
and the cube and fandisk are approximated with little error overall,
locally some corners and creases in the fandisk example end up
being rounded off. For example, the left edge of the center piece is
smoothed because the DOG fitted to both sides of the crease. Since
such mechanical shapes are typically easy to segment based on
creases, we acknowledge that other approaches that build on prior
segmentation (e.g., [Mitani and Suzuki 2004]) likely lead to more
feature-preserving solutions. Such segmentation can be integrated
with our method at the placement finding stage in the future.

Our method is robust with respect to the tessellation of the target
shape, as we show in Fig. 20. We note, however, that we do achieve
the most success with close-to-uniform tessellations. Irregular tes-
sellations (Fig. 20a) or noisy surfaces (Fig. 20b) can be approximated
using our algorithm. Noisy surfaces lead to a larger number of
geodesics, as the stopping condition is based on their curvature.
Sparse meshes, if simple enough, can succeed with our algorithm,

0%

2%

error

Fig. 19. Our method can approximate models with sharp creases, yet it is
not optimized for perserving such features specifically. (Top) the cube is
approximated with 6 patches (𝑑𝐻 = 1.2%), and the fandisk (bottom) with
17 patches, (𝑑𝐻 = 1.7%).

d failure case: projecting a sparse mesh

fail, sparse mesh

success, regular mesh

c sparse mesh

input result

DOGs

b noisy mesh

a irregular mesh

Fig. 20. Our algorithm is not strictly limited to uniform tessellation and
can approximate meshes that are valid manifolds with sufficient number
of vertices. Our algorithm succeeds with (a) irregularly tessellated meshes,
(b) noisy surfaces and (c) on simple shapes, even if very sparsely tessellated.
While the wrapping stage is less prone to challenging tessellations, (d) the
non-linear projection fails, yet it succeeds given a more uniform mesh.

as shown in Fig. 20c. Our algorithm does find two geodesics on each
rim of the cylinder and wraps it with two DOG patches accordingly.
In the wrapping stage, our algorithm uses the target mesh vertices
selectively as position constraints, with 𝛿distance determining how
far the vertices may be from the current patch. Our algorithm initial-
izes 𝛿distance based on the average edge length of the target model
and applies a multiplier of 1.25. This default value seems to perform
well on simple shapes such as the cylinder, but might fail for more
complex shapes. As we show in Fig. 20d (left), a very sparse tessel-
lation can lead to failure in our non-linear projection stage, even
after successful wrapping. Using a more uniform tessellation can
mitigate this problem, as we preliminarily show in Fig. 20d (right).
Such a uniform remeshing step can be easily integrated into our
pipeline in the future.

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

Shape Approximation by Developable Wrapping • 200:11

Comparison with Stein et al. [2018] . We already compared our
results with previous methods on the bunny example in Fig. 3. In
Fig. 21, we extend our comparison with Stein et al. [2018], as it is
the most recent representative work in this area. We use their open
source code and run several of our models with their method, taking
care to select the best possible parameter settings for each example,
such as energies and optimizer strategies. Our method generally
results in smoother approximations. The authors do acknowledge
that their “final design is largely guided by the input tessellation”
leaving the user to provide a suitable, curvature aligned mesh. We,
on the other hand, use meshes that are common in 3D reconstruction
or modeling software. In terms of fabrication, their method lends
itself to flank milling, as they acknowledge in their paper. While
the orginal work does not provide any patch decomposition, we
applied the automatic segmentation and parameterization method
[Sorkine et al. 2002] that the authors mention in their paper. We
show the obtained patches in Fig. 22. However, since this parame-
terization method is generic and not specially tailored to piecewise
developable surfaces, the resulting patches may run across creases.
Our results consist of well-defined flattenable patches that can read-
ily be fabricated from sheet material. One limitation worth noting
here is that the boundary of the open shapes is not smooth in both
methods, pointing to more research questions.

Future user interfaces. In this paper, our focus is on building a
stable algorithm with only high-level parameters, resulting in high
quality, automatic developable approximations. In the future, our
algorithm can be augmented with elaborate user interaction for
greater real-world impact. Such interaction design requires analysis
of users’ requirements, current workflow and context, including
how much influence they would like to have in such design tasks.
Since our algorithm is automatic, it is very suitable for suggestive
user interfaces, effectively making multiple suggestions to users,
which they can mix selectively. This can be implemented within our
global placement routine, which accepts pre-initializations and fixed
selections. Alternatively, we can use the previously fitted DOGs and
let them slide towards poorly covered areas. If users wish to define
a rough layout of the patches, a possible interaction would be to
allow them to paint onto the surface. We could trace the closest geo-
desic and generate preview patches in realtime. These user-selected
patches can be used again as pre-selected geodesics in our global
placement optimization, which then covers the remaining areas.
Similarly, users may wish to specify different degrees of granularity
locally. This selection could be integrated into our placement opti-
mization and offered as an interactive brushing interaction for users.
Lastly, symmetry is an important visual attribute that contributes
to the perception of aesthetics. Our algorithm can be extended by
adding symmetry detection and allowing users to select symmetry
axes in their design.

5 CONCLUSION
We presented an automatic algorithm that approximates a given
target shape by piecewise developable surfaces. Our method pre-
serves the overall target shape and its topology. The key is that we
do not deform the original mesh to compute the approximation, but
instead wrap the input with developable patches that we control

Stein et al.input Our method

Fig. 21. We compare several of our results to themethod of Stein et al. [2018],
as the most recent representative of this line of work.

and optimize. While our method is automatic, we enable users to
specify the granularity of the resulting developable representation,
effectively steering the tradeoff between assembly effort and approx-
imation error. We demonstrated the effectiveness of our algorithm
on several digital and fabricated examples.
In the future, we plan to investigate aesthetic aspects, such as

controlling the seam, as well as offering more high-level control for
users. We also aim to extend our method to cater to manufacturing
needs, e.g., by optimizing developable surfaces with stability, scale
and material properties in mind.

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

200:12 • Ion, Rabinovich, Herholz, Sorkine-Hornung

Fig. 22. The method of Stein et al. [2018] does not readily export flattenable
patches. We applied the method that they cite as a possible automatic
segmentation tool [Sorkine et al. 2002], which produces unfavorable patches.
Here, 229 patches are found. We used 1.005 as the distortion threshold and
106 for the perimeter/area ratio.

ACKNOWLEDGMENTS
We would like to thank David Lindlbauer for feedback, support and
help with paper model fabrication and video production. This work
was in part supported by the Swiss National Science Foundation
(NCCR Digital Fabrication Agreement #51NF40-182887) and by a
DAAD FIT fellowship.

REFERENCES
Q. Alessio. 2012. Membrane locking in discrete shell theories. Ph.D. Dissertation. Nieder-

sächsische Staats-und Universitätsbibliothek Göttingen.
M. Balasubramanian, J. R. Polimeni, and E. L. Schwartz. 2009. Exact Geodesics and

Shortest Paths on Polyhedral Surfaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence 31, 6 (2009), 1006–1016. https://doi.org/10.1109/TPAMI.2008.213

P. Bo and W. Wang. 2007. Geodesic-Controlled Developable Surfaces for Modeling
Paper Bending. Computer Graphics Forum 26, 3 (2007), 365–374. https://doi.org/10.
1111/j.1467-8659.2007.01059.x

Y. Boykov, O. Veksler, and R. Zabih. 2001. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 11
(Nov 2001), 1222–1239. https://doi.org/10.1109/34.969114

D. Chapelle and K.-J. Bathe. 1998. Fundamental considerations for the finite element
analysis of shell structures. Computers & Structures 66, 1 (1998), 19–36.

H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann, T. Randrup, and J. Wallner. 1999.
On Surface Approximation Using Developable Surfaces. Graphical Models and Image
Processing 61, 2 (1999), 110 – 124. https://doi.org/10.1006/gmip.1999.0487

P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: measuring error on simplified
surfaces. Computer graphics forum 17, 2 (1998), 167–174.

A. De Coninck, B. De Baets, D. Kourounis, F. Verbosio, O. Schenk, S. Maenhout, and
J. Fostier. 2016. Needles: Toward Large-Scale Genomic Prediction with Marker-by-
Environment Interaction. Genetics 203, 1 (2016), 543–555. https://doi.org/10.1534/
genetics.115.179887

M. P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.
D. Fuchs and S. Tabachnikov. 1999. More on paperfolding. The American Mathematical

Monthly 106, 1 (1999), 27–35.
E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In

Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 62–67.
http://dl.acm.org/citation.cfm?id=846276.846284

P. Herholz, W. Matusik, and M. Alexa. 2015. Approximating Free-form Geometry with
Height Fields for Manufacturing. Computer Graphics Forum 34, 2 (2015), 239–251.
https://doi.org/10.1111/cgf.12556

A. Jacobson, D. Panozzo, et al. 2018. libigl: A simple C++ geometry processing library.
(2018). https://libigl.github.io/.

C. Jiang, C.Wang, F. Rist, J. Wallner, and H. Pottmann. 2020. Quad-Mesh Based Isometric
Mappings and Developable Surfaces. ACM Transactions on Graphics 39, 4 (2020).
https://doi.org/10.1145/3386569.3392430

D. Julius, V. Kraevoy, and A. Sheffer. 2005. D-charts: Quasi-developable mesh segmen-
tation. Computer Graphics Forum 24, 3 (2005), 581–590.

D. Kourounis, A. Fuchs, and O. Schenk. 2018. Towards the Next Generation of Mul-
tiperiod Optimal Power Flow Solvers. IEEE Transactions on Power Systems PP, 99
(2018), 1–10. https://doi.org/10.1109/TPWRS.2017.2789187

S. Lawrence. 2011. Developable Surfaces: Their History and Application. Nexus Network
Journal 13, 3 (2011), 701–714. https://doi.org/10.1007/s00004-011-0087-z

Y. Liu, Y. Lai, and S. Hu. 2009. Stripification of Free-Form Surfaces With Global Error
Bounds for Developable Approximation. IEEE Transactions on Automation Science
and Engineering 6, 4 (2009), 700–709.

Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang. 2006. Geometric modeling
with conical meshes and developable surfaces. ACM Transactions on Graphics 25, 3
(2006).

F. Massarwi, C. Gotsman, and G. Elber. 2007. Papercraft models using generalized
cylinders. In 15th Pacific Conference on Computer Graphics and Applications (PG’07).
IEEE, 148–157.

J. Mitani and H. Suzuki. 2004. Making papercraft toys from meshes using strip-based
approximate unfolding. ACM Transactions on Graphics 23, 3 (2004), 259–263.

J. Nocedal and S. Wright. 2006. Numerical optimization. Springer Science & Business
Media.

D. Panozzo, E. Puppo, and L. Rocca. 2010. Efficient multi-scale curvature and crease
estimation. Proceedings of Computer Graphics, Computer Vision and Mathematics
(Brno, Czech Rapubic 1, 6 (2010).

K. Polthier and M. Schmies. 2006. Straightest geodesics on polyhedral surfaces. In ACM
SIGGRAPH 2006 Courses. 30–38.

H. Pottmann and J. Wallner. 1999. Approximation algorithms for developable surfaces.
Computer Aided Geometric Design 16, 6 (1999), 539 – 556. https://doi.org/10.1016/
S0167-8396(99)00012-6

H. Pottmann and J. Wallner. 2001. Computational Line Geometry. Springer-Verlag,
Berlin, Heidelberg.

M. Rabinovich, T. Hoffmann, and O. Sorkine-Hornung. 2018a. Discrete Geodesic Nets
for Modeling Developable Surfaces. ACM Transactions on Graphics 37, 2 (2018).

M. Rabinovich, T. Hoffmann, and O. Sorkine-Hornung. 2018b. The Shape Space of
Discrete Orthogonal Geodesic Nets. ACM Transactions on Graphics 37, 6 (2018).

M. Rabinovich, T. Hoffmann, and O. Sorkine-Hornung. 2019. Modeling Curved Folding
with Freeform Deformations. ACM Transactions on Graphics 38, 6 (2019).

K. Rose, A. Sheffer, J. Wither, M.-P. Cani, and B. Thibert. 2007. Developable Surfaces
from Arbitrary Sketched Boundaries. In Proc. Symposium on Geometry Processing.
163–172. http://dl.acm.org/citation.cfm?id=1281991.1282014

C. Schreck, D. Rohmer, S. Hahmann, M.-P. Cani, S. Jin, C. C. Wang, and J.-F. Bloch. 2015.
Nonsmooth developable geometry for interactively animating paper crumpling.
ACM Transactions on Graphics (TOG) 35, 1 (2015), 1–18.

C. Schüller, R. Poranne, and O. Sorkine-Hornung. 2018. Shape representation by
zippables. ACM Transactions on Graphics (TOG) 37, 4 (2018), 78.

S. Sellán, N. Aigerman, and A. Jacobson. 2020. Developability of Heightfields via Rank
Minimization. ACM Transactions on Graphics 39, 4 (2020). https://doi.org/10.1145/
3386569.3392419

I. Shatz, A. Tal, and G. Leifman. 2006. Paper Craft Models fromMeshes. Visual Computer
22, 9 (Sept. 2006), 825–834. https://doi.org/10.1007/s00371-006-0067-6

J. Solomon, E. Vouga, M. Wardetzky, and E. Grinspun. 2012. Flexible developable
surfaces. Computer Graphics Forum 31, 5 (2012), 1567–1576.

O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. 2002. Bounded-distortion
piecewise mesh parameterization. In Proceedings of IEEE Visualization. IEEE Com-
puter Society, 355–362.

O. Stein, E. Grinspun, and K. Crane. 2018. Developability of triangle meshes. ACM
Transactions on Graphics 37, 4 (2018).

C. Tang, P. Bo, J. Wallner, and H. Pottmann. 2016. Interactive design of developable
surfaces. ACM Transactions on Graphics 35, 2, Article 12 (2016), 12 pages.

F. Verbosio, A. D. Coninck, D. Kourounis, and O. Schenk. 2017. Enhancing the scalability
of selected inversion factorization algorithms in genomic prediction. Journal of
Computational Science 22, Supplement C (2017), 99 – 108. https://doi.org/10.1016/j.
jocs.2017.08.013

C. C. Wang and K. Tang. 2004. Achieving developability of a polygonal surface by
minimum deformation: a study of global and local optimization approaches. The
Visual Computer 20, 8-9 (2004), 521–539.

H. Wang, D. Pellis, F. Rist, H. Pottmann, and C. Müller. 2019. Discrete Geodesic Parallel
Coordinates. ACM Transactions on Graphics 38, 6, Article 173 (Nov. 2019), 13 pages.
https://doi.org/10.1145/3355089.3356541

H. Zhao and G. Xu. 2006. Triangular surface mesh fairing via Gaussian curvature flow.
J. Comput. Appl. Math. 195, 1-2 (2006), 300–311.

ACM Trans. Graph., Vol. 39, No. 6, Article 200. Publication date: December 2020.

https://doi.org/10.1109/TPAMI.2008.213
https://doi.org/10.1111/j.1467-8659.2007.01059.x
https://doi.org/10.1111/j.1467-8659.2007.01059.x
https://doi.org/10.1109/34.969114
https://doi.org/10.1006/gmip.1999.0487
https://doi.org/10.1534/genetics.115.179887
https://doi.org/10.1534/genetics.115.179887
http://dl.acm.org/citation.cfm?id=846276.846284
https://doi.org/10.1111/cgf.12556
https://doi.org/10.1145/3386569.3392430
https://doi.org/10.1109/TPWRS.2017.2789187
https://doi.org/10.1007/s00004-011-0087-z
https://doi.org/10.1016/S0167-8396(99)00012-6
https://doi.org/10.1016/S0167-8396(99)00012-6
http://dl.acm.org/citation.cfm?id=1281991.1282014
https://doi.org/10.1145/3386569.3392419
https://doi.org/10.1145/3386569.3392419
https://doi.org/10.1007/s00371-006-0067-6
https://doi.org/10.1016/j.jocs.2017.08.013
https://doi.org/10.1016/j.jocs.2017.08.013
https://doi.org/10.1145/3355089.3356541

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Locally fitting a single developable patch
	3.2 Global approximation with multiple developables
	3.3 Non-linear projection of the target onto the patches

	4 Results
	4.1 Implementation
	4.2 Discussion

	5 Conclusion
	Acknowledgments
	References

