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heavy, and hot!

7:01-7:02 PM, the user is wearing oven gloves...

7:02-7:04PM, the user is reaching into the oven...

7:04, ...bringing out a large baking sheet with two hands...

...

...

Goal 1: prepare to bake food using the oven safely ...

Goal 2: check on food that is being baked in the oven ...

Goal 3: safely place hot and large baking sheet on kitchen counter ...

Narration:

Goal identification:

Action generation:
Action 1: knife moves away to ensure safety

Video stream

Action 2: pan trivets move close for baking sheet

A
ction-goal alignm

ent

Figure 1: Everyday objects, such as trivets, are brought to life by the Object Agents system. These objects move autonomously,
in order to assist and protect users. Our system (1) perceives context using a vision language model backbone, (2) reasons about
user goals and object affordances, and (3) generates actions that are delivered to familiar items augmented with robotic motion.

ABSTRACT
Users constantly interact with physical, most often passive, objects.
Consider if familiar objects instead proactively assisted users, e.g.,
a stapler moving across the table to help users organize documents,
or a knife moving away to prevent injury as the user is inatten-
tively about to lean against the countertop. In this paper, we build
on the qualities of tangible interaction and focus on recognizing
user needs in everyday tasks to enable ubiquitous yet unobtrusive
tangible interaction. To achieve this, we introduce an architecture
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that leverages large language models (LLMs) to perceive users’
environment and activities, perform spatial-temporal reasoning,
and generate object actions aligned with inferred user intentions
and object properties. We demonstrate the system’s utility provid-
ing proactive assistance with multiple objects and in various daily
scenarios. To evaluate our system components, we compare our
system-generated output for user goal estimation and object action
recommendation with human-annotated baselines, with results
indicating good agreement.
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1 INTRODUCTION
In our daily lives, we routinely reach for familiar items to help us
complete physical tasks. However, in almost all cases, these objects
are passive. Imagine a future where all your everyday objects, that
you already know well, are active—they can sense your needs and
adapt accordingly. A stapler might autonomously move across your
desk to help organize documents, a knife could edge away to prevent
injury when it realizes you are inattentively leaning against the
countertop, or a dongle might move to you as you are struggling to
connect a thumb drive.

Striving towards such a future, researchers have long explored
technology for a future in which everyday physical objects and
environments dynamically adapt to meet users’ needs. To assist
users with physical tasks we need to (1) recognize actionable user
needs in the moment, and (2) map them onto appropriate physical
output to help serve those needs.

Physical output can be produced by, e.g., robots. They can assist
in a variety of tasks, including with household tasks [61], workplace
efficiency [55, 75], or health monitoring for the elderly [7]. Alterna-
tively, many dynamic interfaces have been investigated to manipu-
late physical objects [15, 72], act as programmable matter [45], and
blend into the built environment (e.g., walls or floors [20, 37]). This
research direction has contributed many actuation mechanisms,
typically as new dedicated devices for physical output.

Beyond the ability to create physical output, systems need to
recognize users’ needs and intent in their current context to pro-
duce timely and appropriate actions. Research on intent recog-
nition is an active area in human-robot collaboration (e.g., [71]).
Recent advances in artificial intelligence (AI) and large language
models (LLMs) catalyzed research in interaction with robots. Re-
searchers have demonstrated how robots break down higher-level
user input into executable robot instructions autonomously by rec-
ognizing user intent, reasoning about it, and acting on it [60]. In
other words, they demonstrated embodying intelligence in one
robotic instance (e.g., a robotic arm, a humanoid, etc.). This em-
bodiment of intelligence is referred to as physical AI [1, 52] and
presents a substantial step towards the vision of dynamically adap-
tive physical interfaces [35]. We, however, are interested in dis-
tributing such embodied intelligence across users’ familiar objects
and environments. To make such systems ubiquitous, they should
disappear [76].

In this paper, we build on previous research in tangible interac-
tion and intent recognition and focus on embodying intelligence

in an unobtrusive way, such that it blends into the background,
becoming almost invisible to users. To do so, we augment users’
everyday objects with robotic motion, turning them into proactive
assistants, while maintaining their familiarity. The main question
is: How do we recognize when and how to assist users across a
variety of tasks and environments?

1.1 Towards Unobtrusive Physical AI
We tackle this question and present a system that perceives users’
activities, reasons about their task and potential goal, and generates
actions for physical objects to proactively adapt to users’ needs at
that moment. These physical objects become our Object Agents. We
realize these actions by augmenting everyday objects (e.g., staplers,
mugs, plates, utensils, etc.) with simple wheeled robotic platforms
such that they can move across surfaces as physical output. We
present a novel system to demonstrate how such proactive objects
with robotic motion driven by our system’s perceptive and reason-
ing capabilities, can assist users in several situations.

Consider the example in Figure 1, where a user is in their kitchen
with our system deployed. The user is roasting a turkey in the oven.
With oven gloves on, they open the oven door to check on the turkey
and find that it is now cooked perfectly. They carefully lift the large
baking sheet out of the oven with both hands and close the oven
door with their leg. However, their cooktop is cluttered with pans
and pots, leaving no space for the heavy and hot baking sheet. The
user’s trivets are not only small but also out of reach on the kitchen
counter. Fortunately, the trivets are Object Agents: augmented with
robotic motion and part of our system with centralized perception
and reasoning. The system has been following the user’s actions
through a ceiling-mounted camera and reasoning about their goals
in the background. It recognizes that the user has removed a large,
heavy, and hot baking sheet from the oven and will need to place
it down safely. The system reasons that two smaller trivets should
move close to the user and position themselves to form a heat-
insulated surface large enough for the baking sheet, and executes
the action using the embedded robotic platforms.

The trivets are not alone, they are accompanied by other Object
Agents such as the cutting boards, bowls, etc. As we illustrate
in Figure 1, our centralized system continuously keeps track of
user actions, reasons about users’ goals, and controls appropriate
physical objects to move in helpful ways. From a user’s perspective,
familiar objects can proactively assist them in everyday scenarios,
therefore becoming Object Agents.

To implement this system, we build on the perceive-reason-act
loop [77]. We detail our implementation in Section 3 and summarize
it as follows:

− Perceive: Our system uses continuous camera streams and
vision language models (VLMs) to observe and establish an
understanding of the user’s context in textual form.

− Reason: From the perceived user context, our system reasons
about possible goals or intent of the user. To do so, our system
establishes a memory and prioritizes relevant actions in a
spatio-temporal context.

− Act: Physical objects are equipped with simple wheeled
robotic platforms allowing them to move across surfaces.
Based on the predicted user goal, our system generates an
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action for these Object Agents, e.g., move towards or away
from the user or push other unactuated objects.

1.2 Contributions
This work makes four primary contributions:

(1) System: A novel system to explore and facilitate user in-
teraction with proactive physical objects to enhance user
activities.

(2) Application space: We explore suitable interactions and ap-
plications to demonstrate the utility of such a system

(3) Evaluation: We quantify the accuracy of our system’s ability
to infer user goals and generate appropriate object actions.

(4) Design considerations: We discuss design considerations for
such embodied intelligence in everyday objects for future
system developers.

By shifting the focus from robots to familiar objects, we enable
everyday objects that already populate our physical environments
to be helpful, responsive, and proactive artifacts that understand and
anticipate human needs while maintaining the physical identities
that make them intuitive to use. The robotic movement is merely
one form of physical assistance chosen for demonstration in this
paper. The main contribution is our perceive-reason-act system,
that orchestrates physical output in nondeterministic context.

The system presented in this paper is a step towards a higher-
level concept that we call unobtrusive physical AI. We believe
that such adaptive systems can enrich our daily tasks and inter-
actions by moving into the background and presenting as regular
familiar items, but are ready to engage with users when appropriate.
As Mark Weiser said “the most profound technologies are those
that disappear” [76] and we couldn’t agree more.

2 RELATEDWORK
Ourwork on Object Agents builds upon and extends research across
multiple domains: tangible and embedded interfaces, context-aware
computing, human-robot interaction and robotic assistance, and
agency in interactive systems. We position our contributions within
these research areas and highlight how Object Agents advances
beyond prior approaches.

2.1 Tangible and Embedded Interfaces
Research on tangible interfaces has long explored embedding digital
capabilities into physical objects. Ishii and Ullmer’s seminal work
on Tangible Bits [35] introduced the vision of bridging digital and
physical worlds through tangible manipulation of everyday objects.
This vision inspired numerous systems that augment physical ob-
jects with sensing capabilities [5, 22], digital displays [14, 27], and
computational augmentation [40].

Tangible interfaces can respond to direct manipulation, serv-
ing as physical proxies for digital information [58]. For example,
Radical Atoms [33] envisioned materials that can change form and
appearance dynamically to form tangible representations of digital
information that users can manipulate.

Beyond responding to direct manipulation, self-actuated tangi-
ble interfaces can form dynamic physical interactions with actu-
ated shape-change and motion. Such actuated tangible interfaces
can take forms of mobile robots [6, 63, 64, 72], wearables [25],

and integrate into the built environment, e.g., walls [20] and table-
tops [34]. They can aid the 3D printing process [6], dynamically
appear and disappear from users’ attention [50], form haptic experi-
ences [25, 63, 64], augment holographic telepresence [31], and loco-
mote tabletop objects [72], among others. Among this line of work,
Push-That-There [72] explored object-level manipulations from mul-
timodal user instructions. Similarly, Gao et al. [16] investigated
using multimodal instructions to interact with a shape-changing
interface, integrating generative AI for flexible support.

We similarly actuate everyday objects, but focus on enabling
proactive assistance without explicit user instructions. Our system’s
output to physical object action is based on contextual understand-
ing and inferred intent in non-deterministic settings. For this pur-
pose, we employ LLMs leveraging their rich general knowledge
and reasoning capabilities to both enable such proactive assistance
in non-deterministic situations. We contribute to this research area
with our software architecture that reasons about users’ contexts
and outputs proactive actions for our robotic objects to take.

2.2 Context-Aware Computing
Context-aware computing focuses on systems that adapt their be-
havior based on information about the user’s situation [12]. Early
work by Dey et al. [11] established frameworks for context recogni-
tion that enable applications to respond appropriately to environ-
mental changes. More recent approaches leverage machine learning
to understand complex user contexts and predict appropriate sys-
tem responses [23]. With current AI advancements, there has been
increasing interest in using AI to understand context and adjust
to user needs in real-world interactions, (e.g., in Extended Real-
ity (XR) [62]). Recent work employed LLMs to augment objects
with digital functionalities in XR [13], describe live scenes for vi-
sually impaired users [9], and enable opportunistic multimodal
interactions with Internet of Things devices across contexts [28].

Our work extends this line by applying contextual reasoning
specifically to physical objects. While prior context-aware systems
typically adapt digital interfaces or smart environments [28, 46], Ob-
ject Agents applies contextual intelligence to the objects themselves,
enabling granular, object-specific responses physically assistive to
user needs.

2.3 Human-Robot Interaction and Robotic
Assistance

Research in human-robot interaction (HRI) has explored how robots
can assist users in everyday tasks [53]. Social robots [44, 48] and
collaborative robots [24] aim to understand human intentions and
provide appropriate assistance. Robotic assistance has shown par-
ticular promise for users with motor impairments [54] and elderly
users, who may benefit from automated support in daily activities.

In many interaction scenarios, it is beneficial for robots to proac-
tively initiate assistance [70], rather than waiting for explicit re-
quests. To realize proactive robotic assistance in everyday environ-
ments, robotics researchers [8] proposed reasoning about human
intent or possible future states as two ways to determine the assis-
tance to offer. Building upon insights from this field, we investigate
enabling proactive assistance from robotic everyday objects. Our
approach leverages users’ existing knowledge of and relationships



UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Han et al.

with everyday objects, potentially reducing the learning curve and
social barriers associated with adopting new robotic assistants.

2.4 Agency in Interactive Systems
The concept of agency, i.e, the ability to act autonomously to achieve
goals, has been explored inmany interactive systems.Mixed-initiative
interfaces [30] share control between users and automated pro-
cesses, while intelligent agents [78] act on behalf of users to ac-
complish tasks in many digital task domains, such as web naviga-
tion [83], slide generation [18], software engineering [74], and so
on. Closer to the physical world are works that investigate activ-
ity monitoring during everyday procedural tasks. In this context,
agents can observe user activities and decide when to intervene to
provide assistance. [3]. Besides interacting with users, generative
agents supported by an LLM backbone can also interact among
themselves, creating social simulacra [51].

Our work builds on these foundations and aims for physical
objects to proactively assist users, acting as "physical agents" from
a user’s perspective. Unlike software agents or digital assistants
that operate primarily in digital spaces, Object Agents bridges the
physical-digital divide by augmenting the material world that sur-
rounds us with robotic motion and physical assistance.

Our work onObject Agents integrates and extends these research
domains in novel ways. While prior work has explored making
objects interactive (tangible interfaces), context-sensitive (context-
aware computing), movable (actuated objects), or collaborative
(HRI), Object Agents uniquely combines:

(1) Proactive initiation of physical actions based on user context
in everyday scenarios

(2) Maintenance of familiar object identities and affordances
despite added robotic actuation and intelligence

(3) A generalizable framework that can be applied across diverse
everyday objects

This combination enables a new interaction paradigm where
objects already populating physical environments are transformed
into intelligent, assistive artifacts that understand and anticipate
user needs while maintaining their original physical identities that
make them intuitive to use.

3 SYSTEM IMPLEMENTATION
We implement a perceive-reason-action loop to augment existing
everyday objects so that they can proactively assist users with
physical outputs. We open source our system at https://github.com/
interactive-structures/ObjectAgents.

Specifically, we instrument users’ environments with cameras.
As we illustrate in our system overview in Figure 2, our system
streams frames to continuously describe the scene with the aim
of understanding users’ context. It further maintains a memory
of users’ activities and changes in the scene. A goal identification
step uses information from the current scene and the memory to
determine the most likely user goal at the given time step. An action
generation step receives goals and generates actions for objects,
while considering the selected goal and what and how objects in the
current scene can help users. The generated actions are evaluated
on how much they align with the user’s goals. Tangentially helpful
actions are rejected at this step to not disturb the user with many

less relevant actions. Once a generated action passes the alignment
check, the system executes the action in the physical space, with
the selected object(s) performing system-determined motion.

We leverage current multimodal LLMs as the system’s back-
bone, for their commonsense knowledge [36, 81], and frame-level
visual scene understanding. We implement our current system with
cameras as input, and tabletop objects’ locomotion as output.


Context

KB

Object 
Action



User 
Goal Execution

Figure 2: High-level architecture of our Object Agents system.
Video input is processed by a VLM and aggregated over time
to generate context for a particular scene. This context feeds
into an LLM-driven reasoning system,which infers user goals
and generates goal-aligned robotic actions. These actions are
sent to physical objects, interacting with users in real-time.

3.1 Context Comprehension: Forming a
Temporal Understanding of User Actions

The prerequisite to generating helpful actions for users is to un-
derstand their current context, including their environment, the
objects they interact with, their actions, etc. Today’s VLMs are
very capable of describing static visual scenes with natural lan-
guage [19]. However, beyond understanding frames, it is important
for a proactive system to understand temporal sequences to infer
scene activities, in order to offer helpful assistance

Consider a scene with a user working through a document who
is occasionally distracted by their phone. Frame-level understand-
ing at different timesteps may be that they are working with the
document, or they are interacting with their phone, instead of them
trying to work through the document while being occasionally dis-
tracted by their phone. Combiningmultiple frame-level descriptions
can help establish this understanding. However, a challenge is that
everyday activities are undefined and freeform in nature, lacking
clear boundaries or predictable patterns.

A simple approach would be to summarize and memorize at
a fixed number of frames; However, this does not guarantee that
it will not miss capturing a short but important activity. Another
straightforward idea would be to accumulate all frame-level descrip-
tions, but this quickly leads to an overpopulated scene memory
containing irrelevant information. This increases computational
cost, and more importantly, could misguide the system with ex-
cessive non-critical information. While recent multimodal LLM
advancements are enabling video understanding [68] and therefore
temporal events, it remains challenging to use them with streamed
video inputs in a real-time setting.

Therefore, to counteract these issues and create a robust context
comprehension, we use VLMs with frame-level inputs and devise
our own memory strategy, which we illustrate in Figure 3.

https://github.com/interactive-structures/ObjectAgents
https://github.com/interactive-structures/ObjectAgents
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Memory-based temporal understanding





Frame-level descriptions

VLM

“Objects: papers in front of the 
user, mug close to the user, …
Activity: user is seated at the 
desk, they are holding a paper in 
one hand …”

“Summary: engaged in reviewing papers at their desk.
Sequential: [hh:mm]: the user is reviewing a stack of 
papers, engaged with the documents; 
[hh:mm]: user continues to sort and review papers, main-
taining a consistent focus and engagement with the task”

previous context

LLM

Context

Figure 3: Frame-level descriptions of user actions, object in-
teractions, and scene changes are generated using a vision-
language model and stored in working memory. This infor-
mation is periodically condensed into temporal narratives
that evolve over time. Example outputs from each submod-
ule are shown.

3.1.1 Frame-level descriptions. In order to maintain narration, we
maintain and update a working memory stream of frame-level
scene descriptions.

A VLM (OpenAI GPT-4o) continuously receives frames captured
by an environment-instrumented camera, and describes what it
sees. We augment its generation process with a set of objects de-
tected by an object detection model (see Section 3.4.2) and its own
output from the last frame queried. We instruct the model to de-
scribe the scene with a focus on objects in the scene, user actions,
and scene changes. Importantly, we direct its attention towards
objects’ positions, user position, user body orientation, attention,
and interactions with objects. We design for obtaining this set of
information based on previous literature on user intent [29, 57].
For every scene change, we store the frame-level description into a
working memory stream. Identical scenes are marked with a simi-
larity flag, which we annotate with gray overlays in Figure 3. These
unchanged frames are not stored in memory to avoid unnecessary
processing of redundant information.

3.1.2 Memory-based temporal understanding. For every 𝑁 scene
changes, an update of the memory is triggered. We utilize an LLM
(OpenAI GPT-4o mini) to summarize the current user actions and
also keep user action sequences with temporal information in mem-
ory. As we show in Figure 3, it recursively updates its memory
given new scene descriptions and time information.

For example a narrative sequence before an update may be “From
7:03-7:05 pm, the user is chopping tomatoes at a kitchen counter; At
7:06 pm, another person enters the kitchen; At 7:07 pm, the user is
leaning on the counter, and engaged in a conversation”.Depending on
what happens next, the updated narration after the next frame-level
description may be “From 7:03-7:05 pm, the user is chopping tomatoes
at a kitchen counter; At 7:06 pm, another person enters the kitchen
and converses with the user; From 7:07-7:10 pm, the user maintains
engagement in conversation, shifting body postures between leaning
on the counter and standing straight”. This narration stream allows

encapsulation of dynamic happenings in the scene within restricted
memory size in the system.

The sequential memory is limited to containing a limited num-
ber of segments. As time passes by, activities further in the past
gradually get more and more summarized. To maintain access to im-
portant details despite the passing of time, we maintain a sequence
of details that complements the main narrative sequence. We also
keep an overall summary, which is a 2-3 sentence description of the
scene activity, for quick references to happenings in the scene. Am-
biguities such as short outlier gestures are currently disambiguated
by this summarization mechanism that takes time and context into
consideration, as well as information of multiple modalities (e.g.,
user gesture and scene context), which we direct the VLM to de-
scribe. We discuss further system extensions for more fine-grained
multimodal sensing and intention inference in Section 7.

3.2 Goal Identification: Inference on User
Intention and Possible Future States

Our system’s goal identification process uses its memory stream
to infer the user’s goal in the scene, with additional considerations
of potential undesirable future states that need to be prevented.
This dual-track reasoning approach aligns with literature on the
reasoning process for proactive robots, which distinguishes reason-
ing to achieve proactive robotic assistance from reasoning about
user intent and reasoning about future states [8]. In the context of
our goal identification process, “goal” encapsulates both user intent
and avoidance of potential undesirable future states. We illustrate
this module in Figure 4.

Conceptually, we formulate partial observability in the goal
identification process. The memory defined in section 3.1.2 rep-
resents the observable states, while user intent and possible future
states constitute the hidden states. Given narrations as observa-
tions, the goal identification subsystem needs to infer hidden states.
It generates several potential goals, and assigns three key metrics
to the goals generated: Confidence (C: 1-10): How likely this in-
tention is, based on observed evidence, Urgency (U: 1-10): How
time-sensitive addressing this intention would be, and Timeframe
(T): When the inferred intention needs to be addressed (immedi-
ate/1min/5min/15min/30min). In the same pass, a goal is selected to
balance between these metrics. We implement the goal identifica-
tion process with an LLM query for its ability to do commonsense
reasoning. We utilize OpenAI GPT 4o-mini in our implementation.

When performing everyday tasks, a user’s intention often re-
mains the same over many frames. For example, a user who is
trying to complete a take-home exam may maintain an overarching
intention of efficiently finishing the exam until a change occurs
(e.g., receiving an urgent call on their phone). Based on this, we
do not trigger goal identification at every frame. Instead, the goal
identification process is only triggered upon changes in the scene,
which are marked by the frame-level descriptor in section 3.1.1.

3.3 Action Generation: Possible Ways for
Objects to Offer Help

Given an identified goal, the system aims to output a physical action
for suitable object(s) to assist with the identified goal (whether it is
user intent, or prevention of a potential undesirable future state).
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LLM >_

previous goal

if distinct

User Goal
Object Action

Context

“Continue sorting and reviewing 
the stack of papers to complete 
the task at hand.”

1. list possible goals
2. select goal based on
   - confidence
   - urgency
   - timeframe

Figure 4: Our system queries a language model to propose
possible goals, assigning each a confidence score, urgency
level, and timeframe for action. This reasoning process sup-
ports proactive assistance by identifying and prioritizing
user intentions as activities unfold.

This includes both actuated objects with robotic motion platforms
and passive objects that can be pushed by actuated ones.

As we illustrate in Figure 5, we formulate this as an action gener-
ation process with the objective of generating goal-aligned actions,
that is augmented with (1) retrievable knowledge regarding object
properties, (2) spatial relationships between objects and users, and
(3) a high-level understanding of the scene context for additional
information besides the goal.

Goal


Context

KB

Spatial

Object Action Action Execution

Environment (e.g., safety)
Object (e.g., affordance, function, robotic)

LLM >_
1. Object & Action: select most 
helpful object
2. Spatial: select target positions
3. Plan execution: robotic or push
4. Object presentation to user

“Object to move: Stapler
Destination: User
Justification: …user is sorting… 
might need to staple
Objects to push: N/A”

Figure 5: Upon identifying a user goal, the system proposes
physical actions for nearby objects to achieve the goal or
prevent undesirable outcomes, guided by object affordances,
spatial relationships, and scene context.

3.3.1 An object knowledge base in the background. In this paper,
we utilize existing everyday objects in users’ environments as the
“actors” performing actions, instead of additional robots. Everyday
objects have unique properties that need to be considered for action
generation in a scene. We maintain a long-term object knowledge
base of both actuated and passive objects. During action generation,
relevant object properties are retrieved from this knowledge for
objects detected in the scene, to augment the action generation
process. Such a retrieval-augmented generation (RAG) process can
give the LLM relevant information upon generation, and has been
demonstrated to enhance answer accuracy and reduce model hallu-
cination [17]. We describe the contents of the knowledge we use
for our system in the following.

Functionality. Everyday objects have different functionalities. A
mug can hold liquids, and may even be used as a container for small
items, but it cannot staple documents. A stapler can be used to
staple documents. Users need different functionalities for different

tasks. For example, when a user is organizing loose documents into
packets, they likely need a stapler to staple them together.

Affordances. Considering objects’ affordances can inform more
user-friendly movements. For instance, a mug affords gripping
through its handle. When a mug moves to the user to offer coffee,
a generated movement considering this affordance may rotate to
let its handle point to the user for intuitive gripping, rather than
the handle being hidden in the back.

Physical properties. Physical properties determine whether an
object is able to push another object. It is difficult for a small and
lightweight object such as a dongle to push a bigger and heavier
object such as a mug.

Safety considerations. Safety considerations are crucial for gen-
erating movements, for both goals that anticipate user intents and
those that prevent undesirable future states. Consider a system-
identified user intent on chopping vegetables to prepare for a meal.
During or after user actions of bringing out a chopping board and
vegetables, a knife may approach the user upon anticipation of this
intent. It is crucial in this case for the system to acknowledge that
the knife’s blade poses potential danger, and therefore should not
point to the user. In another case, if the user carelessly leaned on
the kitchen counter with the knife’s blade right next to their hand,
the system with safety considerations may move the knife away to
protect the user (as illustrated in Figure 1).

Related objects. Objects may often appear together, such as scis-
sors and tape; they may complement each other’s functionalities,
such as a cutting board and a knife; or they may just be semantically
associated, such as a dongle and cables. In an action generation
process, such object relationships may be utilized as evidence. For
example, if a cutting board is in the scene and is seen to be in front
of the user, it is more likely that the user would need a knife (a
functionally-complementary object to the cutting board) as opposed
to a mug that is also on the table (an object that has little to no
relationship to a cutting board).

3.3.2 Spatial understanding of object-object and object-user rela-
tionships. Meaningful action generation requires a spatial under-
standing of the scene to determine whether an object needs to be
moved (e.g., moving an object that is already next to the user close
to them does not offer much assistance); Whether it seems possible
for an object to move to an target position; And what objects may
be best candidates for pushing other objects in pushing cases where
passive objects are pushed by actuated ones to output movements.
To achieve this, wemaintain and update spatial relationships among
objects themselves and their relationship to the user. We utilize
a recent VLM with strong spatial understanding for this process
(Gemini 2.0 Flash), and ground the VLM’s scene understanding with
real-time updates from an object detection model (see Section 3.4.2).

3.3.3 Action-Goal Alignment: Rejecting Tangentially Helpful Ac-
tions. As our system continuously performs the above processes
and frequently generates actions, it is critical to selectively output
only the most helpful actions in the physical world, in order to not
disturb the user with actions that are only tangential to their task.
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To achieve this, we incorporate an alignment step to evaluate
how much each generated action aligns with the identified goal.
Actions that are not well-aligned get rejected in this step.

We currently implement a preliminary alignment step where
an LLM assigns an alignment score for a (goal, action) pair, and
the system rejects actions that do not meet an alignment threshold.
This simple alignment step filters out many unnecessary actions,
and helps our system output the most helpful ones. For example, in
an office scene with a robotic coffee mug near the user, the action
generation process may often output moving the coffee mug to the
user to offer them a drink, while the user is performing different
tasks. Given inferred goal states, the system may often reject the
coffee mug’s action with a low alignment score, and let the reason-
ing process continue running for better aligned action outputs. At
a timestep, the user’s goal becomes "troubleshooting a small device
(USB) to continue working on their laptop". A generated action to
move a dongle to the user receives a high alignment score and is
outputted to the dongle object to act upon.

Further incorporation of reward models for alignment could
further align physical actions with human preferences, and is an
interesting topic for future investigation [43].

3.4 Action Execution: Hardware and Motion
Control

To turn everyday objects into robotic agents, we augment themwith
simple, wheeled platforms that allows them to move. We focus on
minimal modifications that preserve the object’s original function
and appearance. (In Figure 6, for instance, motors, batteries, and a
microcontroller are integrated into the handle of the knife.)

Our motion control system receives high-level instructions from
the LLM (e.g. “move_towards”, “point_away”, “push_towards”) and
translates these into appropriate low-level motor commands. We
rely exclusively on computer vision for sensing the environment,
tracking object positions through a ceiling-mounted camera, and
wirelessly sending motor updates to each robotic platform.

3.4.1 Robotic Platform. Our robotic platform, shown in Figure 6 is
a two-wheeled, differential drive system that consists of common
electronic components in a 3D-printed case. Inside, we use two
DC gearmotors (N20, 6V 250 rpm), a motor driver (DRV8833), a
Bluetooth-enabled microcontroller (Arduino Nano 33 BLE Rev2),
and a small rechargeable battery (7.4V 450 mAh LiPo). On each
of our 3D-printed wheels, we add a pair of O-rings for additional
traction. The onboard microcontroller has one job, which is to
receive and execute raw motor commands. All sensing, PD motion
control, and path planning is handled by an external system, which
we describe below.

For our use case, the hardware is sufficiently robust—supporting
the weight of common tabletop objects while able to move forward,
backward, and rotate in place. In the future, a more mature fabri-
cation process (perhaps involving active materials for locomotion)
could make these platforms even more discreet [26].

3.4.2 Environmental Sensing. Our system performs motion control
using a single ceiling-mounted RGB camera (OBSBOT Meet SE). To
track the position and orientation of relevant objects, we fine-tune a
YOLO model (Ultralytics YOLOv11-OBB [39]) on 15 common items

plastic wheels with O-ring “tires”

motors and driver

wireless microcontroller

rechargable battery

motors 
and driver

Figure 6: We augment everyday objects, such as coffee mugs
and kitchen knives, with small wheels that allow them to
move across flat surfaces. These robotic objects are controlled
wirelessly by our motion subsystem.

across three environments (office, kitchen, and home entryway).
The object detection system outputs 2D bounding boxes with ori-
entation information, allowing us to estimate each object’s position
and heading. We apply a simple homography transformation to
convert pixel coordinates to real-world coordinates on the tabletop
surface.

3.4.3 Actions and Path Planning. Our robotic objects can perform
a set of basic actions, including “move”, “point”, “push”, and “shake”.
The LLM passes these action commands to our motion subsys-
tem, along with any relevant parameters (e.g., “target: user” or
“item_to_push: staples”).

To navigate between locations, we implement a hybrid A* search
that combines grid-based planning with simple motion primitives.
After generating the initial path, we use line-of-sight verification
to simplify the trajectory, eliminating unnecessary waypoints. The
remaining waypoints serve as intermediate targets for our motion
controller. More complex actions, like “push_towards”, are decom-
posed into sequences of primitive actions (e.g., “move” to approach,
“point” to orient correctly, then “move” again to make contact).

Routes are automatically replanned at about 4 Hz, allowing the
robotic objects to respond to dynamic obstacles.

3.4.4 Low-Level Motor Control. Our low-level control system oper-
ates at 15 Hz, continuously processing visual feedback and adjusting
motor commands. We implement a PD controller that handles both
orientation and position control. For heading adjustment, the sys-
tem calculates the angular error between the current and target
orientations, then modifies the differential wheel speeds accord-
ingly. Position control uses a proportional approach, with move-
ment speed reducing as the object nears its destination to prevent
overshooting.
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Figure 7: Overview of our motion control subsystem. A
ceiling-mounted RGB camera captures object and user lo-
cations in real-time (15 Hz), feeding into a motion control
stack with goal-setting, routefinding, and closed-loop PD
control. Motor commands are sent via Bluetooth to robotic
objects.

4 SYSTEM EVALUATION
Our system aims to generate helpful actions mediated through phys-
ical interfaces that support users in their individual tasks. In our
evaluation, we investigate the quality of our system-generated user
intent prediction and object action recommendations. We perform
our evaluation in 3 parts that build on each other. First, we sample
how users perform simple tasks in an office environment to record
their variety. Next, we ask annotators to describe the user actions,
their likely intent, and to recommend objects to assist the users in
the recordings. Lastly, we ask evaluators to rate descriptions for
these videos, for which we present system-generated descriptions
and the annotations collected from human annotators, serving as a
baseline to compare the quality of our system output.

4.1 Part #1: Sampling user interactions
First, we aimed to collect a set of data on how different users perform
simple tasks to evaluate our system in the subsequent parts. We
were interested to see how users’ approaches to the same tasks may
vary, e.g., how the sequence of stepsmay vary. To do so, we recruited
4 participants to perform 5 simple tasks in an office environment.
We show the study setup in Figure 8. In this part, we collected 20
videos in total.

Figure 8: Participants performed 5 simple office tasks, which
we video recorded for system evaluation

Task 1: Crafting. Participants were asked to make a gift box
similar to an example gift box we prepared. We placed scissors and
colored paper in front of them, and placed the glue stick on the far
end of the table. Three participants started by cutting shapes out
of the colored paper and then reached for the glue stick after that.
We expect that bringing the glue stick closer is helpful to the user.
The other participant retrieved the glue stick early in the process
and started cutting only after that. Here, we don’t expect an object
action to be recommended.

Task 2: Organizing documents. We presented participants with a
stack of printouts. We asked them to create exam packets, i.e., 10
exams of 4 pages in the correct order. All participants started by
laying documents across the desk to group them. In this scenario,
we expect that bringing the stapler to the user is a useful object
action.

Task 3: Stapling. Continuing from task 2, participants then searched
for the stapler on the table that was placed in the corner. Two partic-
ipants started stapling the documents. When participants noticed
that no staples came out, they tried stapling again. They then found
the staple box and filled the stapler. Interestingly, two participants
checked and filled the stapler right away after finding it. We antici-
pate that bringing the staple box to the user will be helpful for the
participants who didn’t fill the stapler right away.

Task 4: Reading distraction. Participants were instructed to read a
very important text quickly and answer a quiz. They were also told
that their new work phone is on the table. During them reading,
we triggered frequent notifications on the phone. All participants
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started out focused on reading. Three participants tried to ignore the
notifications at first and stay focused, but all turned their attention
to the phone eventually, even if just to silence it. Two of them
set it face down on the table. One participant engaged with the
notifications frequently and replied to them.We expect that moving
the phone would be a helpful recommendation to assist users.

Task 5: Connect USB. We asked participants to copy a file from
their ‘new work computer’ onto a USB drive. All participants in-
spected the computer’s ports and adapters that were close to the
computer. After realizing that they don’t fit, participants looked
around and found the correct dongle on the far end of the table.
Moving the correct dongle to the user would be a helpful action.

4.2 Part #2: Annotating user goals and object
actions

We used the 20 videos from study part #1 and asked 4 new par-
ticipants to describe the goals that the users in the videos might
have. Our aim was to establish a baseline to compare our system
output to, assuming that humans are the best system to make sense
of other people’s actions. We informed the annotators that they
should assume that a subset of the objects are actuated, e.g., can
move across the table and/or push other objects around. Annotators
were then asked to describe (1) the user’s actions in the video, (2) the
goal they most likely have, and (3) recommended objects and their
actions to help the user achieve their apparent goal.

4.2.1 Results. Overall, the quality of the annotations was good.
We excluded 2 annotators due to grammar issues, which made the
annotations ambiguous, and replaced them with 2 newly recruited
annotators. Many annotators did suggest the actions that we had
anticipated. We append all results in the supplementary materials
and summarize them in the following.

For T1, all annotators recommended that the glue stick move to
the user. In addition, they recommended other related objects to
move, e.g., the pencil case, or the paper tray to hold the construction
paper. Annotators had different strategies for assisting with T2; two
suggested that items (e.g., the cup) move away to make space, one
recommended the papers to move themselves, and one suggested
other items should move to organize the papers for the user (e.g.,
the figurine). For T3, two annotators suggested that the stapler
moves out of its hiding, and two advised the papers to organize
themselves again. Since this is the only scenario that contained
two tasks and therefore share similarities, it makes sense that the
annotators suggest similar actions. In T4, all annotators were on
the same page and suggested that the phone move away. The same
is true for T5, where everyone recommended that the white dongle
move to the user.

Additionally, we noted that a few annotators leaned into the idea
of such Object Agents and had creative ideas about how to assist
the users. For example, one annotator suggested that the phone
move out of the room for T4, that the curtain behind the user "blow
5 sheets at the time so the human does not have to count the sheets"
in T2, or that the scissors cut the shapes by themselves in T1. This
creativity may also suggest an openness to such interactions that
would be exciting to explore in the future.

4.3 Part #3: Evaluating system-generated
reasoning and actions

To evaluate our system-generated output, we recruited 16 new par-
ticipants to rate the output descriptions on a Likert scale from 1
(very poor) to 5 (very good). Each evaluator watched 5 videos (one
for each task, from part #1) and rated 6 descriptions. The descrip-
tions contained human annotations, which we collected in part #2,
and 5 system-generated outputs as ablated conditions. Since we
have 4 human-annotated descriptions for each video, we randomly
select one. The evaluators were asked to first watch the video and
then rate each of the 6 descriptions for the 3 aforementioned ques-
tions, i.e., user action, user intent, and object actions. Each of our
human evaluators rated 5 videos with 6 descriptions across 3 ques-
tions each, resulting in 90 ratings per participant and 1440 ratings
in total. We randomized all orders.

4.3.1 Ablated descriptions. We created ablated versions of our
system-generated video descriptions to see if andwhat influence the
individual modules of our architecture have. We show an overview
in Figure 9. One condition is the Full System output. We also gen-
erate description without the object knowledge base (Section 3.3.1),
without the goal identification (Section 3.2), andwithout thememory-
based context tracking (Section 3.1.2), respectively. We also create
descriptions with only the Frame-level descriptions (Section 3.1.1),
which effectively only uses VLM descriptions and serves as a base-
line. With this VLM baseline, we aim to verify if a naive imple-
mentation of our system would be sufficient. We expect the VLM
baseline to perform the worst and the Human baseline to produce
the best descriptions.

Object 
knowledge

User goalMemoryFrame-level

Full system

No memory

No user goal

No object knowledge

VLM baseline

Randomize 1 of 4 human descriptions form study part #2 Human baseline

Conditions

System
modules

Figure 9: We evaluate 6 different descriptions: one human
annotation and 5 system-generated descriptions.

4.4 Results
Our results indicate that the VLM baseline condition performs sig-
nificantly worse than all other description conditions. Our system-
generated descriptions are not significantly different from the Hu-
man baseline. We show our results in Figure 10.

Since we conducted our experiment as a within-subjects design,
we performed a Friedman test on the main factors description and
question. There was no significant effect for question (𝜒2(2) =

1.556, 𝑝 < 0.459). We did find a statistically significant difference
in our video descriptions (𝜒2(5) = 34.991, 𝑝 < 0.001). To identify
where the differences originate from, we performed a post hoc
analysis with Wilcoxon signed-rank tests. To adjust for multiple
comparisons, we applied a Bonferroni correction (𝑝 < 0.0033).



UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea Han et al.

The pairwise comparisons revealed that differences between the
VLM baseline and every other description condition are significant.
This confirms that a naive approach of relying entirely on the
VLM output is not sufficient to perform the reasoning needed to
understand the user goals and derive meaningful object actions.

0 1 2 3 4 5

Human baseline

VLM baseline

Full system

No user goal

No memory

No object know.

Description Rating

*

very poor very good

Figure 10: Our results indicate that the descriptions produced
by the VLM baseline are significantly worse than those of
all other conditions, as rated by our human evaluators. The
annotations in our human baseline are not significantly dif-
ferent from any of our system-generated descriptions. The
error bars show the 95% confidence interval.

We did not find any significant differences between the Human
baseline with any of our system-generated descriptions, which
indicates that our system’s reasoning mechanisms better the VLM
generated outputs to be on par with the human annotations in
our experiment. We also did not find any differences between the 5
system-generated descriptions. This indicates that our system is not
overly reliant on any single module, but that they together produce
reasonable interpretations of users’ context and recommendations
for object actions.

5 APPLICATION SCENARIOS
Our Object Agents creates a wide space of new physical interac-
tions in everyday environments, with robotic objects augmented to
provide proactive help to users through intelligent, context-aware
physical actions. We present three implemented application scenar-
ios that demonstrate various types of interactions enabled by our
system, followed by a discussion of the broader space for Object
Agents interactions.

5.1 In the Kitchen
Jamie enters their kitchen to prepare dinner. The kitchen is equipped
with cameras to perceive their actions, tasks, and predict their
intent (Figure 11). They bring out a chopping board, tomatoes, and
potatoes. Jamie takes the tomatoes to the sink to wash them.

Our Object Agents system observes Jamie’s actions, and reasons
that in a kitchen environment, their intent is to chop the vegetables.
Our system is aware that a knife is on the far end of the counter and
generates actions for the physical object (Figure 11a). Considering
the affordances of the object, the knife safely moves itself over to
Jamie’s chopping board, ensuring that its handle faces Jamie, to
avoid hurting them by accident.

Meanwhile, their partner enters the kitchen with an important
question. Jamie turns around. Distracted by the conversation, Jamie
leans against the counter, unaware that the knife is dangerously

close to their hands. Our system observes the situation and infers
that Jamie may get hurt and generates actions for the knife to move
away from their hand (Figure 11c). After the conversation, Jamie
goes to check on the oven. The chicken they are cooking is almost
done. Our Object Agents system sees Jamie in front of the oven and
reasons that they may soon need assistance handling a hot item.
As Jamie takes the chicken out of the oven, two trivets approach
their location, allowing Jamie to safely put down the baking tray
(Figure 11b).

5.2 Leaving Home
The next morning, Jamie is running late for work. They put on their
coat and walks to the door where their partner is waiting, urging
Jamie to hurry up (Figure 12a). As they grab their wallet and phone
from the hallway cabinet, they send a quick text message to let
their team know that they’re on their way. As Jamie turns towards
the door, a tray on the cabinet begins to shake—the tray contains
their keys, which Jamie almost forgot! The Object Agents system
has noticed the forgotten item and has alerted Jamie to this mistake
(Figure 12c).

5.3 At the Office
At work, while on their laptop, Jamie needs to transfer an important
file onto a USB drive. As they attempt to plug it in, they quickly re-
alize their company laptop doesn’t have the proper port. Frustrated,
Jamie scans their desk and rummages through their backpack, un-
aware that the correct adapter is just out of view, behind the lunch
container on their desk. The Object Agents system, however, rec-
ognizes this predicament (Figure 13a). Jamie’s pencil box "comes to
life" as it slides across the table to locate the adapter and pushes it
over to Jamie while they are still digging through their bag.

Later that afternoon, Jamie is organizing stacks of documents
into packets for an upcoming meeting (Figure 13b). The Object
Agent system observes this behavior and attempts to anticipate
Jamie’s needs. As they continue to sort papers, the stapler on the
far side of the desk begins moving to Jamie’s workspace. Drawing
from earlier memories, the system also reasons that the stapler may
in fact be empty. It sends an additional command to the pencil box,
which pushes forward a box of staple refills. The items arrive before
Jamie even realizes what tools they were missing.

6 DESIGN CONSIDERATIONS FOR FUTURE
WORK

This paper is a step towards unobtrusive physical AI, which under-
stands users’ intentions and context, and utilizes robotic capabilities
embedded in familiar everyday environments to proactively assist
users. The main design goal is to add physical assistance in an
unobtrusive way, i.e., the digital system stays in the background
and is almost indistinguishable from users’ typical environment.
To achieve this, we augment everyday objects with robotic motion
and build a system that perceives and reasons about the situation
to generate assistive object actions such that they proactively initi-
ate actions without users’ explicit instruction while maintaining
affordances and identities that users are familiar with. The value of
such Object Agents stems primarily from their ability to recognize
user intent in context rather than simply their ability to move. The
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Figure 11: Object Agents system demonstrating smart kitchen assistance: (a) knife safely positioning itself with handle facing
the user, (b) trivets automatically moving to provide a safe landing spot for hot cookware, and (c) knife detecting potential
danger and moving away from the user’s hand during distraction. Our system understands the affordances of each object and
generates actions that are aligned with user goals.

design space for such unobtrusive systems is large, and we expand
on some design considerations below.

6.1 Sources for Reasoning About Users and
Their Context

We leverage visual observation as an input stream to our user goal
modeling. Visual observation allows system designers to reason
about situations, such as when objects are out of reach (e.g., knife
approaching user to assist chopping in Figure 11a), when users’ have
their hands full (e.g., holding a hot baking pan in Figure 11b, when
objects are out of view and users have difficulty finding them (e.g.,
the hidden dongle in Figure 13), or when users get distracted and
may forget important things (e.g., forgetting their keys in Figure 12).

6.1.1 Integrate agents for digital content. Considering additional
sources as input for reasoning about user needs, system designers
can enable additional utility. For example, with a weather forecast-
ing module, the system may recommend that users bring gloves
in cold weather, or an umbrella if rain is predicted. Integrating
input from a calendar and email application can help the system
understand that the user is about to leave an important prototype
behind when heading to a meeting. Additionally, how full their
calendar is can provide contextual information about how busy
they are. Designers may consider a multitude of additional sensing
data (e.g., physiological signal indicating stress [4], activity recogni-
tion indicating fitness [79].) to provide context that is not visually
observable.
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Figure 12: Preventing a morning mishap: The Object Agents
system notices a user is about to leave home without their
keys. The key tray shakes back and forth to alert the user
that they’re about to leave home without this essential item.

6.1.2 Personalized user goal prediction. While our current system
adapts to general user patterns, system designers may consider
adding a long term memory module that learns over time to per-
sonalize object actions to users’ specific preferences and habits.
The short term memory we implement interprets the current situa-
tion, and would generate similar object actions for different users.
Personalization, on the other hand, could significantly enhance
the system’s utility over time, allowing Object Agents to adapt to
individual user preferences and behaviors. For example, a user may
prefer their food with more salt, which the system can learn over
time and move the salt at dinner time to that user. Such personaliza-
tion can have a big impact on users who need assistance, e.g., users
with motor impairments or elderly people, in tailoring the proactive
object actions to their individual needs and impairments. Subjective
metrics such as user satisfaction, trust, and acceptance are crucial
for effective personalization. Future work can build upon our sys-
tem and focus on understanding the effects of proactive physical
assistance to gain further insight on how to build systems that
adapt to users’ preferences.

6.1.3 Multi-user modeling. Expanding multi-user modeling is an-
other critical area that system designers should consider, whichmay
include resolving conflicting preferences. Cross-context learning

could improve adaptability by enabling the transfer of contextual
understanding between different environments. In multi-person
environments, Object Agents must account for social dynamics,
ensuring that movements do not favor one person or interrupt
ongoing interactions.

6.1.4 Privacy Considerations. As with any intelligent technology
that observes and operates in physical spaces, Object Agents raises
important privacy considerations. The perception systems required
for Object Agents collect significant data about users and their
environments, making it essential to implement privacy-preserving
sensing approaches and transparent data policies. For example, at
the perceiving stage, privacy-preserving sensing methods can be
used [21, 41]. At the reasoning stage, encrypted processing [73] and
efficient VLMs [49] can be utilized for local processing. Additionally,
users can be given control [38] of e.g., privacy zone configurations
(e.g., Eufy Security Camera Privacy Zone function).

6.2 Explicit vs Implicit Interaction
While we focus on proactive objects in this paper, we agree that
balancing agency and automation is essential [59].

6.2.1 Proactiveness vs predictability . System designers should bal-
ance proactivity with predictability. While proactive assistance pro-
vides value, actions should remain within users’ expectations for
their contexts. Novel behaviors should be introduced gradually as
users become familiar with the system. Additionally, Object Agents
should maintain a sense of continuity in their identity. Even when
augmented with sensing and actuation, objects should remain rec-
ognizable as instances of their traditional categories. Additionally,
Object Agents provides subtle indications of intent before move-
ment can help users anticipate object behaviors without requiring
explicit notifications.

6.2.2 Implicit feedback integration. Implicit feedback integration
is another key design consideration—systems that learn from users’
corrective movements, hesitations, or adjustments could refine
their assistance more effectively. Additionally, expanding interac-
tion modalities, such as subtle gestures or voice integration, could
provide users with greater control over Object Agents’ behaviors.
Lastly, autonomy and control are critical, as users must maintain
ultimate control over their environments, with clear mechanisms
to override or disable autonomous behaviors when needed.

6.3 Utility of Embodied Intelligence
In this first step towards unobtrusive physical AI, we focus on
reasoning about how to move objects across surfaces to provide
utility to users. System designers should consider other tasks that
Object Agents can be useful for and tailor systems towards them.
Utility can vary depending on the context, as we outline in the
following.

Assisting users in various tasks may include bringing visible
objects within reach (e.g., the knife approaching the cutting board
in Figure 11a). While such object actions provide mere convenience
for able-bodied users, they may provide high utility for people with
disabilities. The utility also increases if the objects are hidden and
users have a hard time finding them. Similarly, considering objects
that coordinate with each other, e.g., to make space on a full dining
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Figure 13: Proactive office assistance: The Object Agents system demonstrates workplace problem-solving as (a) a user’s pencil
box autonomously slides across their desk to retrieve and deliver a hidden adapter they need for a USB connection. (b) A stapler
and a box of staples move to the person when they are organizing loose documents into packets.

table for a new dish, can be helpful as they relieve users of having
to adjust many items (cf. swarm UIs [42, 65]). Object Agents may
also assist users in their absence, e.g., they may clean the kitchen
after cooking or reset the office after users leave a mess after a
brainstorming and sketching session. We recommend that these
tasks be done with personalization in mind, as different users may
have different preferences; some may like to find things as they
were, and some may like them to be tidied.

Providing guidance to users should include a different set of ex-
pressions. For example, guiding users through a multistep process,
such as cooking or assembly, can have high utility, as the system can
keep track of the upcoming steps and help users not lose overview.
The items needed in the task can provide guidance directly, e.g., a
screwdriver pushing the right bolt to the right side of the assembly,
or a kitchen spoon indicating that the rice should be stirred. Ob-
ject actions to provide guidance may be designed to express more
patience to allow users to find the way on their own first.

Prevent harm or damage. Object Agents may also assist users
in that they recognize imminent harm and prevent it. The conse-
quences may vary. From a cup rotating its handle towards the user
to prevent minor burns, the trivets moving into place to prevent
damaging the expensive countertop (Figure 11b), a knife moving
away from an inattentive user’s hand to avoid a cut (Figure 11c),
to car key hiding as they realize that the user was drinking and
intend to drive under the influence, which may have serious, even
potentially deadly consequences.

Beyond moving across surfaces. To achieve these different pur-
poses, system designers may need to enable different physical ac-
tions. Expanding from only moving across surfaces, objects may
need to detach from walls (e.g., cooking utensils), flip over (e.g., a
distracting phone), jump off of surfaces (e.g, jump from a desk to a
floor to move to a different room), change shape, [2]), or materials
properties (e.g., to adjust to users’ ergonomic needs). We note that
there is typically a trade-off: the more functions an actuated system
needs, the larger its form factor may be, which in turn may compro-
mise the affordances of the original object. Beating this trade-off
is very challenging, but the many advances in (soft) robotics [69]
or metamaterials [32] may make these behaviors tractable in the
future, but these require more exploration.

7 LIMITATIONS
There are a number of technical limitations of our current research
prototype.

Camera-based sensing limitations. Sensing limitations pose chal-
lenges, particularly in cases of occlusion, unusual lighting, or novel
object arrangements.

Currently, we label the objects in the scene and provide a knowl-
edge base about their utility to our system. We provided these data
because the standard object recognition was not robust enough.
Additionally, small items (e.g., the box of staples) were blurry due
to our camera resolution. Using higher resolution cameras and ad-
vances in object recognition models may present a solution in the
near future. Furthermore, incorporatingmultimodal sensing such as
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audio could potentially disambiguate insufficient unimodal visual
cues [28], and enhance reasoning with indirect speech [80]. Our cur-
rent attention and intent inference relies on rather coarse analysis
from camera streams. Multimodal sensing can enhance such infer-
ence by leveraging signals that correlate with user attention, such as
gaze [10, 28]. Additionally, intent inference advancements [82] and
uncertainty modeling frameworks [56] can be leveraged to extend
the system’s intent inference and ambiguity handling capabilities.

Latency of our research prototype. The current end-to-end latency
of our research prototype is about 5-10s, while action outputs are
refreshed every 0.3s. We currently mitigate latency with asynchro-
nous API calls and query reduction with centralized reasoning (i.e.,
as opposed to a reasoning stream for every object). We expect LLM
advancements such as small and efficient models [49] to reduce
latency significantly in the future. During interactions, our system
continuously runs its perceiving and reasoning loop. In the case of
a physical action output failure (i.e., path planning fails), the percep-
tion and reasoning modules continue to seek alternative assistance
opportunities, in analogy to a human trying to offer help but can’t
spare their hands at the moment. Although this is sufficient for
most everyday scenarios, more sophisticated failure recovery can
be utilized for more mission-critical scenarios.

Robotic platform limitations. Our system currently only imple-
ments movement across horizontal surfaces as physical output.
The wheeled drive is not omnidirectional, meaning that, like a
car, it has to turn its heading. It cannot move sideways, which
may be desirable. Furthermore, action expressivity is constrained,
as the current actuation integration supports a limited vocabu-
lary of object movements. Additionally, as mentioned above, other
robotic movements and physical adaptation may be desirable. For
real-world deployment, waterproofing is needed for specific use
scenarios. The platform needs to be waterproofed to allow users to
wash their objects, e.g., kitchen utensils. Miniaturization of robotic
platforms [26] is also desirable for further form integration with
existing objects.

User feedback and deployment. Exploring more application sce-
narios through user feedback and deployment over several weeks
in users’ chosen environments (e.g., home, office, etc.) may reveal
exciting new research directions. Although we would expect pri-
vacy concerns to arise, it would be interesting to learn about the
acceptance of such a system by users. In the future, smaller multi-
modal LLMs [49] can be locally deployed on home hubs for privacy
and computational efficiency. We are optimistic that our system
and the open-source code provided will allow other researchers and
system designers to expand on it and explore unobtrusive physical
AI further.

Safety considerations. Safety for autonomous moving objects
warrants careful consideration. As we mentioned previously, po-
tential safety strategies include creating safety zones around users,
using multimodal sensing to mitigate uncertainties [10, 28], build-
ing emergency stop features, and conservatively filtering actions for
dangerous objects. In this paper, we use a robotic knife to demon-
strate an Object Agent that can both move to prevent harmful
situations (i.e., preventing the user’s hand from being accidentally
hurt by a knife) and provide assistance (i.e., by moving closer when

needed, safely with the handle facing the user). Real-world deploy-
ment must carefully consider potential system errors, misuse, and
malicious intent, especially for dangerous objects. Safety strate-
gies must be investigated and tested in laboratory environments
before Object Agents can be deployed. Since safety for autonomous
moving systems around human users is an active research area in
robotics [66] and privacy and security research, future work should
build on these insights to develop further safety enhancements.
We note that while actuating dangerous objects rightfully causes
concern, such cases need to be investigated rather than ignored to
establish ethical policies early on, similar to investigating actuating
humans’ bodies (e.g., [47, 67])

8 CONCLUSION
This paper introduces unobtrusive physical AI—a step towards aug-
menting everyday objects with intelligence and robotic motion
to proactively assist users while maintaining their familiar affor-
dances and identities. Our approach shifts the focus from robotic
manipulators to the objects that already populate our environments.
The core contribution of our work is a generalizable framework
that enables systems to understand context, predict user intentions,
and determine appropriate assistive behaviors for everyday objects
to perform in the physical world. By connecting this intelligent
system to robotic platforms for locomotion, we demonstrate how
everyday objects can become responsive, helpful agents within
their environment.

Unobtrusive physical AI reimagines everyday environments as
populated with helpful, responsive entities that collaborate with
users to enhance their activities. The primary value comes from the
system’s contextual understanding and decision-making capabili-
ties, not merely from the physical movement of objects. As sensing
and reasoning technologies continue to advance, the boundary be-
tween passive objects and intelligent agents will increasingly blur,
opening new possibilities for how we interact with and within our
physical environments.
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