
Understanding Metamaterial Mechanisms
Alexandra Ion1, David Lindlbauer2,3, Philipp Herholz2, Marc Alexa2, Patrick Baudisch1

1 Hasso Plattner Institute, University of Potsdam, Germany. Email: {firstname.lastname}@hpi.de
2 TU Berlin, Germany. Email: {firstname.lastname}@tu-berlin.de
3 ETH Zurich, Switzerland. Email: david.lindlbauer@inf.ethz.ch

a b

optimize

c d

Figure 1:We define the underlyingworking principles ofmetamaterialmechanisms, which allows us to implement a computa-
tional design tool. (a) It takes user-drawn paths and (b) optimizes the cell configuration which implements the transformation.
(c) In this example, we show the leg of a walker. (d) The fabricated result matches the optimized motion closely.

ABSTRACT
In this paper, we establish the underlying foundations of
mechanisms that are composed of cell structures—known as
metamaterial mechanisms. Such metamaterial mechanisms
were previously shown to implement complete mechanisms
in the cell structure of a 3D printed material, without the
need for assembly. However, their design is highly challeng-
ing. A mechanism consists of many cells that are intercon-
nected and impose constraints on each other. This leads
to unobvious and non-linear behavior of the mechanism,
which impedes user design. In this work, we investigate the
underlying topological constraints of such cell structures and
their influence on the resulting mechanism. Based on these
findings, we contribute a computational design tool that
automatically creates a metamaterial mechanism from user-
defined motion paths. This tool is only feasible because our
novel abstract representation of the global constraints highly
reduces the search space of possible cell arrangements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300877

CCS CONCEPTS
• Human-centered computing → Interactive systems
and tools; • Hardware→ Emerging technologies.

KEYWORDS
Metamaterials, fabrication, computational design.

ACM Reference Format:
Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa,
Patrick Baudisch. 2019. Understanding Metamaterial Mechanisms.
In CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3290605.3300877

1 INTRODUCTION
The recent rise of widely accessible fabrication machines,
such as 3D printers or laser cutters, generated interest in non-
experts to create and design their own devices. Their strive
towards a future of personal- rather than mass-fabrication
is supported by HCI researchers [4], who investigate tech-
niques to directly interact with the machine [25, 28, 47], use
real-world objects for content creation [45, 46] or embed
mechanisms [49] and electronics [35]. These works were
mainly concerned with creating the outside shape of 3D
objects. Since 3D printing uniquely allows users to freely
arrange matter in space, researchers started to generate in-
ternal structures that, e.g., optimize the strength-to-weight
ratio of 3D objects [21], allow arbitrarily shaped objects to
spin [3], or to float in pre-defined poses [30].

Pushing this idea further, researchers engineer microstruc-
tures that deform in a desired way. These structures are

https://doi.org/10.1145/3290605.3300877
https://doi.org/10.1145/3290605.3300877

usually arranged on a regular grid and together define the
properties of the material they form [5]. This concept is
known as metamaterials. Such metamaterial structures can
be designed to change the materials’ elasticity [37], to absorb
energy [12, 40], or to change their shape [24].
Recently, we [18] pushed the concept of metamaterials

further by going beyond materials and create complete mech-
anisms from cellular structures. Our mechanisms consist of
two types of cells that are carefully arranged to move in
concert to achieve the macroscopic mechanical movement.
Along with this novel concept, we demonstrated relatable ap-
plication examples including a door latch or a Jansen walker.
However, the design of these objects was manual and diffi-
cult it still remains unclear what types of mechanisms can
be implemented with such metamaterials.

In this paper, we investigate the underlying working prin-
ciples of such metamaterial mechanisms. To do so, we an-
alyze the interaction of the two types of cells, identify the
underlying topological constraints of metamaterial mech-
anisms, and ultimately implement this domain knowledge
into a computational design tool for non-expert users.

Understanding metamaterial mechanisms
In this work, we set out to understand the underlying mech-
anisms that inform the design of our metamaterial mecha-
nisms [18], which implement a transformation of an input
movement to an output movement. The door latch in Fig-
ure 2a-b, for example, transforms pushing the handle down
(input) into a retraction of the bolt (output). To achieve a
well-defined transformation, metamaterial mechanisms com-
bine two types of cells on a regular grid. The individual cells
(Figure 2c-d), are very simple—they are rigid or can shear.

a

inputinput

outputb

anchors

c

α α

d

Figure 2: (a) This metamaterial door latch is defined by their
microstructure, (b) which transforms the green input path
(pushing the handle) into the pink output path (retracting
the bolt). It consists of only (c) shearing and (d) rigid cells.

Since we already demonstrated relatable application ex-
amples in our previous paper [18], in the remainder of this
paper we will discuss metamaterial mechanisms on a higher
level of abstraction. We will leave out the device applying
the metamaterial and instead focus on the core of the mech-
anism: the transformation of input movement into a desired
output movement, both of which are user-defined.

Understanding cell constraints and how they interact. To achieve
the movement that implements the desired mechanism, the
cells need to be arranged on a grid to play together in a
well-defined way. More formally, ‘play together’ means that
each individual cell has constraints that it propagates to its
neighbors. For example, opposing edges of shear cells remain
parallel (parallelism constraint) and rigid cells additionally
maintain their angle (angle constraint). Since the cells are
connected in two dimensions, their constraints can interact.
We illustrate such constraint interactions in Figure 3. This
example shows how adding a single cell (marked in blue)
prevents 7 other shear cells on the grid from shearing.

a b c

⇒

Figure 3: (a) In this example, (b) setting one cell rigid (c) pre-
vents 7 cells from shearing, changing the output drastically.

Large search space. The example depicted in Figure 3 illus-
trates that interactions of constraints are unobvious and that
by understanding them, we can reduce the search space dras-
tically. We drill down on this example in Figure 4. Here, the
naive approach of simply swapping cell types to find a config-
uration that reaches a user-defined path results in 27 = 128
equivalent mechanisms. This is because any changes within
the 7 cells marked in orange in Figure 3 have no effect on the
resulting mechanism. While this example is only concerned
with one specific scenario, the complete search space would
be 225 ≈ 3 ·107. We generalize this in Section 4 and show how
we reduce the search space by several orders of magnitude.

}…

…

Figure 4: Here, 128 cell configurations result in the same
mechanism, because the cell constraints interact.

The key insight of this work is to build an abstract repre-
sentation of the cell constraints, which defines only distinct
mechanisms. We encode constraints that edges impose on
each other in a graph whose connected components define
their degrees of freedom. We work directly in the reduced
space of distinct mechanisms, rather than exploring the space
of all possible cell configurations.

Computational design tool. Our constraint-based represen-
tation of the metamaterial mechanism and the resulting re-
duction of the search space makes a computational design

tool feasible. We present a computational design tool that
optimizes a cell configuration for user-defined paths. Fig-
ure 1 shows how users define the size of the mechanism they
are looking for and draw the input and output paths. Our
heuristic optimization searches for a cell configuration that
satisfies these boundary conditions.

Novel types ofmechanisms. With our computational approach,
we not only ease the creation process for users, but we also
discover new types of mechanical transformations that were
not known before. Metamaterial mechanisms were manu-
ally designed to demonstrate useful mechanisms, such as
a door latch or pliers. However, we show in Figure 5a that
the transformations they implemented were basic transfor-
mations, such as scaling. In this work, we demonstrate non-
linear transformations, as illustrated in Figure 5b, such as
self-intersections, oscillations and smoothing. We believe
that the approach will foster more complex metamaterial
mechanisms.

a

b

in
in

in

self-intersecting oscillating smoothing corner

ininin

Figure 5: (a) The hand-designed mechanisms in [18] only re-
alize simple transformations. (b) In this work, we discover
more complex and even non-linear transformations.

Contributions & limitations
Our main contribution is an understanding of the underlying
workings and constraints of metamaterial mechanisms. This
enables a computational design tool that would otherwise
not have been possible.
The naive approach of swapping cells on the grid to find

a cell configuration that implements a user-defined path
transformation is computationally infeasible due to an expo-
nentially growing search space. We contribute an abstract
representation of the constraints. Our constraint graph rep-
resentation reduces this search space significantly.
We show that metamaterials can realize more complex

and even non-linear mechanisms—a fact that was unknown
before.

We focus on understanding the constraints on the most
basic cells, i.e., the square shear and rigid cells. We do not
explicitly implement rotated or pre-sheared cells, as we sug-
gested in [18]. Since the topology is the same, we show that
our constraint graph applied to those cells as well.

2 RELATEDWORK
Fabrication of functional objects. Personal fabrication devices
such as 3D printers or laser cutters allow users to fabricate
personalized physical objects. Researches presented interac-
tive systems that ease the process of designing static objects,
e.g., pen holders or booklets, by interacting directly on the
machine [25, 28, 47]. To match digital 3D models with exist-
ing physical objects, researchers proposed augmented reality
environments to ease content creation [45, 46]. 3D printing
has been shown to be an effective tool to making existing
objects (e.g., pliers) more accessible by fabricating adapters
[8], or for ad-hoc repairs on the go (Mobile Fabrication [34]).

Since 3D printers can arrange material freely, researchers
explored how altering the material distribution on the inside
of objects can alter their functionality. Examples include
optimizing the strength-to-weight ratio of objects [9, 21],
making objects stand or float in user-defined poses [30] or
allowing arbitrary shapes to spin reliably [3].

Most 3D printers, however, are limited to creating objects
from plastics. To benefit from superior mechanical properties
of traditional construction materials, researchers provided
software tools that allow user to insert material such as metal
rods, sandpaper [7], fabrics [33], or even water bubbles [48]
into printed objects. Combining different types of materials
was also demonstrated to be an effective assembly approach.
Using pre-stretched material and printing rigid struts on top
allows for fabricating 2.5D shapes in a flat state that curve
up after fabrication [16, 29]. To actively control folding of
objects, researchers employed conductive layers on paper
sheets that can be controlled electrically [44].
We want to push assembly-free mechanisms that can be

printed from a single material [18] further and contribute a
computational tool that assists users in creating them.

Fabrication of linkages and compliant mechanisms. The avail-
ability of fabrication machines not only fosters creating func-
tional objects that are defined by their shape, such as tools or
adapters, but also the implementation of mechanisms. One
popular application are mechanical characters. Researchers
created tools to help users integrate, e.g., walking or driving
mechanisms into arbitrary 3D models [49].

To assist users in creating a new mechanism, researchers
presented computational tools that optimize the position
of gears [10] or links in a linkage (i.e., a mechanism that
connect links with hinges) [41] to match a target locomotion
path of a figure within a confined space [2].

Reducing the number of parts of mechanisms eases the
fabrication process for the user, since the need for assembly
disappears [11]. Such mechanisms are known as compliant
mechanisms, i.e., deforming structures that allow for im-
plementing a mechanism by rendering selected parts thin.
While traditional mechanisms use very stiff (rigid) parts that
are connected by hinges to transform motion or forces, com-
pliant mechanisms consist of one part with very thin areas
that allow for hinging behavior. Since the movement is per-
formed by deformation there is virtually no friction, no need
for lubrication, and thus for maintenance [17]. Since they
consist of only one part, compliant mechanisms miniaturize
well and are commonly used for high-precision mechanisms,
such as micro-electromechanical systems (MEMS) [1] or tele-
operation devices [13].

Very simple compliant mechanisms are holders, where you
can snap in another object. The snap-fit, however, should be
firm enough to hold the object, yet soft enough to push the
object in—a ratio that needs to be optimized [42]. Recently,
Megaro et al. [23] presented a system that creates complex
compliant mechanisms (e.g., a hand with all joints) using
fully-functional linkages as input. We, however, allow users
to draw their desired mechanical transformation, without
the need to define a traditional mechanism first.
We build on the foundations of these works and draw

inspiration from their optimization procedures, although
they are very different from ours. Since they optimize for
continuous parameters, such as length of links, position of
gears, etc., they make use of gradient-based methods. We,
however, operate in a discrete, thus gradient-free space.

Mechanical metamaterials. Metamaterials are artificial struc-
tures with mechanical properties that are defined by their
usually repetitive cell patterns, rather than the material they
are made of [5, 32]. Such structures allow for unique mate-
rial properties, such as materials that shrink in two dimen-
sions upon uniaxial compression [20, 36], that damp impacts
[12, 40], or localize elasticity [6, 22, 37].
On a macroscopic level, these structures are designed to

implement specific material properties. On a microscopic
level—if we think of the unit cells—they can be seen as many
small compliant mechanisms that are interconnected on a
grid. While regular tilings of such cells are well understood
[14, 15, 27, 38, 39], researchers only recently started to vary
the parameters across a metamaterial [24, 26], yet maintain
the same topology of cells.

However, non-uniform tessellations, i.e., when cell topolo-
gies are changed freely across the material, are not well
understood. To our knowledge, metamaterial mechanisms
[18] are the only metamaterials that fall into this category.
Therefore, we base our work on these metamaterials to set
up a first understanding of such non-uniform tessellations.

3 ANALYSIS OF CELL INTERACTIONS
The mechanisms we consider can exhibit intricate behavior
even though they are built from very basic building blocks:
shearing and rigid cells. Figure 3 already demonstrated how
drastically a metamaterial can change after performing a
small local change, e.g., swapping a shear cell for a rigid cell.
These properties are non-obvious but crucial to understand.

In order to understand the movements of a mechanism,
we need to simulate its physical behavior numerically. For
larger grids the optimization procedure can be time consum-
ing. This can hinder interactive exploration of the space of
mechanisms and is especially problematic when sampling
and simulating a lot of mechanisms to find one exhibiting
some pre-defined behavior.
We describe how we model the constraints of a mecha-

nism, which reduces the number of variables in the physical
optimization from all grid points to a few edge vectors. This
enables a significantly more efficient implementation and
gives insights into the degrees of freedom of a mechanism.

Understanding the constraints
Since our metamaterial consists of shearing and rigid cells,
we observe two types of constraints in our cells: (1) paral-
lelism constraints, i.e., opposing edges always remain parallel
and (2) angle constraints, i.e., angles of rigid cells remain
unchanged. Furthermore, all edges maintain their lengths.
This means most edges cannot move independently, e.g., the
same vector can represent edges that have to remain parallel.
Edges that have to maintain a certain angle can also be repre-
sented by a reference edge that needs to be rotated in order
to get the second one. To this end we build a constraint graph
in which each node represents a cell edge and an arc between
nodes the fact that one edge can be constructed by rotating
the other (rotations also include the identity transformation).

Figure 6 illustrates the graph representation for each cell
type individually. For shear cells, opposing cell edges always
remain parallel. The constraint graph consequently only con-
tains arcs between opposing cell edges. Figure 6b illustrates
that rigid cells are represented by a complete graph. This
means that transforming one cell edge defines the transfor-
mation of all other edges. In other words, if we know how
one edge is, e.g., rotated, we know the transformation of
the entire cell, because opposing edges remain parallel and
adjacent edges maintain their angle.

Determining the degrees of freedom
We think of the degrees of freedom (DoF) as a set of edge
vectors that can be transformed independently. This property
is also illustrated in Figure 6, where the constraint graph of
the shear cell in (a) consists of 2 connected components,
which indicates that the cell has two independently moving

1

0

2

3 3 1

2

0
cell edge

angle
constraint

parallelism
constraint

geometric graph
a

1

0

2

3

b

3 1

2

0

2 DoF

1 DoF

Figure 6: We model the constraints as graphs. (a) A shear
cell is represented as 2 subgraphs that model the 2 indepen-
dentlymoving adjacent edges and the parallelism constraint
of opposing edges. (b) A rigid cell is a complete graph, show-
ing that one edge defined the entire cell.

parts, i.e., the green and blue edges. The rigid cell in (b)
moves as a whole, thus the graph consists of one component.
In general, the DoF of our metamaterial are defined by the
number of connected components in the constraint graph.

Building the constraint graph
We build the entire constraint graph by connecting the con-
straints of single cells shown in Figure 6 to their neighbor
cells, based on coinciding edges. For example, Figure 7 shows
how to proceed for a metamaterial with 4 cells. We start at
the lower left cell and add its vertical edges to the constraint
graph. The cell to the right shares the middle vertical edge,
thus we link its other vertical edge to the graph, because they
need to remain parallel. The two shear cells on the right are
processed analogously. The rigid cell, which cannot change
its angle, effectively couples edges of the top right and lower
left cell. Due to the parallelism constraints, entire rows and
columns are linked.

pixel outline: white 0.5pt

geometric graph

Figure 7: We build the constraint graph by connecting the
single cell constraints to their neighbor cells based on coin-
ciding edges.

The notion of DoF generalizes to entire mechanisms. The
final graph in our example consists of 3 connected compo-
nents, which means that the configuration has 3 DoF. Know-
ing one edge vector in each component uniquely determines
all other edge vectors and thereby the whole mechanism.
Therefore, we can formulate an optimization problem only
involving 3 instead of 12 edges, as detailed in Section 6.

In a cell grid that consists only of shear cells, the edges in
each row and column represent one connected component.
The maximum number of DoF on an empty n ×m grid is
therefore n+m. Introducing a rigid cell joins the components
of a row and a column into one, reducing the DoF by one.

The influence of anchors
So far, we only considered relative transformations of edges,
i.e., edges are transformed with respect to each other. How-
ever, since the input of a mechanism is absolute, we need to
fixate (i.e., anchor) the cell configuration in order to calculate
the vertex positions in absolute space. Anchoring an edge in
a cell configuration reduces its DoF by one. The same reason-
ing as for transforming edges, as discussed above, applies;
since one edge of a connected component is defined (here,
fixed to the ground), all edges in the component are defined.

4 REDUCING THE SEARCH SPACE
Since each cell on an×m grid can have 2 states, rigid or shear-
ing, we have 2nm different possible configurations. However,
not all configurations will generate a unique mechanism
since shearing cells can become rigid because of the con-
straints. Consider the mechanism in Figure 8. The constraint
graph reveals that the green and blue cells cannot shear.
This is the case when all edges of a cell are contained in
the same connected component. Since the rotation of both
potentially independent edges of the shear cell are defined
by the same connected component, their angle is constraint
to the original 90°and can thus not shear.

⇒

non-shearing cellsgeometric graph

Figure 8: It might be non-obvious how many DoF this meta-
material has. Our constraint graph reveals that it contains 2
cells that cannot shear, i.e., the blue and the green one, leav-
ing only 2 connected components, thus 2 DoF.

Since the blue and green cells cannot shear, the two cell
configurations in Figure 8 are equivalent. We only want to
consider unique mechanisms in our optimization. But how
many of these unique mechanisms exist? To answer this
question, we enumerate all possible connected component
configurations. It is indeed possible to give an explicit for-
mula for the number of all unique mechanisms on a n ×m
grid. We present the derivation of this function in Appendix
A. Here, we show the empirical verification of the formula
for all configurations on grids with n < 5. In Figure 9, we
show the number of all 2nn mechanisms (gray) along with

the number of unique mechanisms (blue). While this number
still grows rapidly with increasing grid size, it reduces the
space of configurations on a grid from growing quadratically
with respect to n in the log-plot to linearly. This enables us to
consider much larger grids when searching for mechanisms
with certain properties.

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9
1

10 4

10 8

10 12

10 16

10 20

10 24

grid size

co
nfi

gu
ra

ti
on

s
(lo

g
sc

al
e)

total permutations
unique configurations

Figure 9: The number of all configurations (log scale) on a
square grid compared to the number of all unique mecha-
nisms.

5 SIMULATING THE MOTION
To simulate the deformation of the object when a vertex of
a cell moves, we use a simple elastic material model. We
assume rigid edges and that deformation occurs when two
edges incident to a corner are rotated relative to each other.
Through the constraint graph all edges are defined as

soon as one representative edge per connected component
is known. To define the remaining edges, we traverse the
constraint graph, e.g., using breadth-first search, starting
at the representative edge. When moving across an arc the
appropriate rotation is applied. When all edges are known
we start to reconstruct cell vertices. To this end we traverse
the grid itself starting at an anchored vertex. Each vertex is
effectively reconstructed by summing all edge vectors along
a path connecting the vertex to the anchor.

Direct numerical simulation would try to find a set of grid
vertices minimizing this deformation energy subject to a
set of non-linear constraints, edges have to maintain their
length, opposing edges in a cell have to stay parallel and
angles in rigid cells stay at 90°. Additionally, certain vertices
are fixed, either in their original position or by an external
force driving the mechanism.
Analyzing the constraint graph allows us to formulate a

constrained optimization problem that has the same solution
but is much more efficient than the direct approach.

The shape of the whole mechanism is determined by fixing
the DoF, which requires two numbers per connected com-
ponent. The current state of the deformation can therefore
be modeled by a state vector x ∈ R2 Nd where Nd is the
number of DoF. Each state vector uniquely determines all
edge vectors and is associated with the deformation energy

D (x) =
N−1∑
i=0

(
αi (x) −

π

2

)2
,

where αi (x) stand for an interior angle of the i-th cell and
N for the number of cells. This energy models the fact that
each cell will, depending on thematerial used, resist shearing,
even for non-rigid cells. Note that we only need to take one
angle per cell into account because all angles in a cell produce
the same energy. To simulate the deformation, we find a
minimizer of D with respect to the following constraints:
C1. The edges are rigid and therefore have to be fixed in

length. Constraining all DoF to unit length will ensure
this property for all edges in the mechanism.

C2. Cells cannot invert, i.e., change their orientation. We
thus assure that cell areas always remain positive.

C3. Anchors are fixed in position.
C4. The corner that is being dragged is fixed in position.
Note that we do not have to enforce parallel edges or that

rigid cells maintain their interior angles. These constraints
are built into the reduced representation and each state vec-
tor induces a valid cell layout. This constitutes another ad-
vantage over the naive approach where these constraints
have to computed explicitly. Unfortunately, the energy and
the constraints are non-linear and non-convex. However, the
constraints are only quadratic and can be analytically differ-
entiated. The energy D can also be analytically differentiated
albeit yielding more complex terms due to the calculation of
angles from edge vectors. We solve the problem of minimiz-
ing D subject to C1-C4 by employing the non-linear interior
point solver IPOPT [43], which gives us a configuration for
a specific handle position. To simulate the full deformation,
we sample the desired handle path and find the correct con-
figuration by solving the optimization problem starting from
the previous configuration as an initial guess.

Invalid input. The range of the handle corner is limited by
the structure of the mechanism, which is fixed by anchors.
If a handle position outside this range is prescribed, the
optimization problem has no solution because C4 cannot
be satisfied. To yield an approximate result even for these
situations we try to find a handle position, which is close to
the desired one but in the range of the handle. To this end we
solve another optimization problem minimizing the distance
of the updated handle position P̃h to the prescribed one Ph :

D ′ (x) =
P̃h − Ph

2 ,
subject to the constraints C1-C3. The resulting configu-

ration is valid and places the handle close to the desired
position. Since this solution represents only one valid con-
figuration but does not minimize D in general, we optimize
D with respect to C1-C4 using the new handle position.

Evaluation
As a preliminary evaluation of the simulation, we manually
created 3 mechanisms with different input paths in our soft-
ware and manufactured them from laser cut acrylic and 3D
printed hinges (Ninjaflex filament). We tracked the motion
of the physical mechanisms using OptiTrack with up to 7
markers on each mechanism and compared it with motion
paths from our simulation.We adjusted the OptiTrack data to
account for scaling. The mean error of our physical cell con-
figurations was 8.1% (SD = 8.7%), corresponding to 4.8 mm
on our 60 mm cells. Figure 10 shows at one example that the
recorded and simulated data matched closely.

input (template)input

Figure 10: We tracked the physical motion using OptiTrack
(blue) and compared it to our simulation (green).

6 OPTIMIZATION OF CELL PATTERNS
We aim to alleviate the problem of finding a suitable cell
configuration given a set of desired input and output paths.
In the following, we detail our algorithm that exploits afore-
mentioned properties of metamaterials mechanisms such as
the relation between cell transformation and anchors, and
the constraint graph. Note that while most of our exam-
ples illustrate quadratic cell configurations, the approach is
equally applicable for arbitrarily shaped objects. The main
requirement for our approach is a simulation that correctly
reproduces the deformation of a mechanism given an input
path, like the one described in the previous section.

Overview
Our algorithm takes a set of user-defined input and output
paths as well as a rough shape of the desired device as in-
put. It then aims at finding a close-to-optimal fit between
the motion of the mechanism and the user-defined paths.
Generally, input paths are actuated (e.g., by users) and the
mechanism transforms this motion to the output path. In
context of the optimization, however, we do not need to dif-
ferentiate between input and output paths but use them as a
list of paths which a mechanism should be able to reproduce.
As a first step in our algorithm, we automatically determine
the positions of the anchors for the cell configuration based
on the scale and direction of the paths. We then generate a
mechanism that produces the desired motion. An overview
of the algorithm is illustrated in Figure 11.

Input cell configuration

Calculate error for

Set cell resolution r
r := 2r

Start: empty cell configuration
list of target paths

Final result where

start resolution
typically 4x4 cells

Simulated Annealing
to get new configuration

compare error
with previous best result

compare result of resolution
with best result from
smaller resolution

yes

yesyes

no

no

Figure 11: Overview of the process of automatically finding
cell patterns given user-specified paths.

Since the behavior of a mechanism is non-linear, we create
cell configurations using stochastic optimization, specifically
Simulated Annealing [19, 31]. Instead of modifying the cell
configuration directly, we modify the constraint graph, i.e.,
split and merge connected components until the algorithm
converges. To speed up computation, we use a hierarchical
approach where we first find an optimum configuration for
scaled-down versions of the mechanism and use this configu-
ration as seed for larger versions. The output of the algorithm
is a cell configuration that produces the desired paths.

Input and representation
Users specify the shape of the cell configurationC0 ∈ 0, 1x ,y ,
with x and y being the dimensions of the mechanism. This
is a configuration of cells with undefined behavior. In the
later optimization, the type of each cell is specified (e.g.,
they become shear or rigid cells), which ultimately governs
the motion of the mechanism. Each mechanism is defined
by its cells, its vertices V and edges E. The position of the
anchors A ⊆ V governs the motion of a mechanism and
fixes the mechanism’s absolute position in space. Anchors
are automatically determined by our algorithm.
Besides C0, users specify a set of desired paths P . Each

path is a list of points, stored as a matrix Pi ∈ R2×n . The first

point pi ,0 of a path Pi is a vertex of the cell configuration, i.e.,
pi ,0 ∈ V . Note that while we use one input and one output
path for clarity of exposure, the optimization generalizes to
more than one input and output path.

Setting anchors
Our algorithm automatically determines candidate positions
for anchors based on user-defined paths. Anchors have a big
influence on the scaling and rotation of an output path. There
are three main considerations that govern the positioning
of the anchors (i.e., finding which edge to anchor). First, the
ratio between the length of paths should be similar to the
ratio between the distance between individual paths and the
anchors. As shown in Figure 12a, if an input path is half the
length of an output path , then the ratio for the distance
between input path and anchors, and between output path
and anchors should be similar. This accounts for scaling
between the paths and can be calculated as

min
l

m∑
i=0

m∑
j=i+1

|Pi |��Pj �� − |el − Pi |��el − Pj
��

wherem denotes the number of user-defined paths. Sec-
ondly, anchors are essentially rotation points between paths.
We therefore choose the location of anchors to reflect this
rotation, as illustrated by Figure 12b. Thirdly, the maximum
travel of a vertex is determined by its distance to an anchor,
i.e., larger distance yields larger possible travel. To allow
for maximum travel, we position the anchors at maximum
distance to all input or output vertices, formulated as

max
l

s∑
i=0

|el − Pi | .

Since this operation can be performed on a scaled-down
version of the configuration, we can exhaustively search the
space and choose the best anchor positions. It is possible
that no valid positions are found, which allows us to esti-
mate a-priori if the user-defined mechanism is achievable.
For example, if the length of a path exceeds the cell grid’s
diagonal, there is no solution. Users can use a larger grid or
change the paths. For all other cases we optimize for the best
approximation of the desired mechanism.

a b

anchor

in

out

sc
al

in
g

ro
ta

ti
on

Figure 12: The anchor placement influences (a) the scaling
of the output path and (b) the global rotation.

Generation of cell configurations
Given a list of user-defined paths, any cell configuration C
will transform them in a specific way. For a path Pi , this
transformation is denoted asC (Pi). We aim to find a cell con-
figuration Cj with minimal difference between Pi and C (Pi)
while using as few DoF as possible to increase mechanical
stability. We thus aim to find a solution given the objective

min
j

m∑
i=0

ωi
��Pi −Cj (Pi)

�� .
ωi ∈ [0, 1] ,

∑m
i=0ωi := 1 are user-defined weights for the

individual paths. We typically use equal weights for all paths
(i.e., 0.5 for 1 input and 1 output path).

A trivial approach to the problem would be to randomly
sample cell configurations (i.e., switching cell types ran-
domly) and choose the best fit between the user-defined
paths and the paths the mechanism produces. This, however,
is not feasible, as discussed in Section 4, given the large num-
ber of possible cell configurations that yield similar move-
ments or are rigid.
In our approach, instead of modifying the cell configura-

tion directly, we manipulate the underlying constraint graph
with respect to the DoF of a configuration. We aim for a
configuration with as little DoF as possible that still can re-
produce a path well. A too low number of DoF would not
allow for complex motion (e.g., with changes in direction).
A too high number of DoF would lead to mechanically un-
stable structures. Therefore, we constrain a configuration to
be within DoFmin and DoFmax , which are typically chosen
to be 2 and 5, respectively.

For each step in our optimization, we compute the current
DoF for a configuration Cj , which govern the next step, i.e.,
if the next configuration shall contain more or less DoF. If
the DoF should be increased, we split a chosen connected
component. Conversely, we merge two connected compo-
nents to decrease the DoF. If the DoF are within the limits, an
operation is chosen randomly. The connected components
that are affected by the operation are chosen randomly.

We use Simulated Annealing for the optimization to avoid
converging to a local minimum. We calculate the current
temperature Tj for each step as

Tj = (1 + e
ej

T0α j)−1,

where ej is the error of the current iteration j. It is cal-
culated as the sum of differences between the user-defined
paths, i.e., ej =

∑m
i=0ωi

��Pi −Cj (Pi)
�� . The error is normal-

ized with respect to the length of the paths.T0 is the starting
temperature, which we typically choose as one third of the
maximum number of iterations, as described below. α con-
trols the overall falloff, typically 0.85 < α < 0.99 (in our

case α = 0.95). To avoid that the algorithm converges in a
local minimum, we restart the Simulated Annealing process
several times. After each run, we compare the best results of
the current and previous run. Convergence is reached if the
result did not improve compared to the previous run.

Hierarchical generation. We chose a hierarchical approach
for the optimization, to avoid users having to estimate the
cell resolution of their configuration. We start the Simulated
Annealing process for an initial configurationC0 with a small
resolution r , e.g., 4 × 4 cells. Once the previously described
Simulated Annealing procedure converged, we double the
resolution and restart the Simulated Annealing with the
larger resolution r + 1. After convergence, we compare the
error of the cell configurationCr andCr+1. In case the result
did not improve, we assume Cr to be the best solution. If
the result did improve, we increase the resolution again and
restart the process. A typical error function for the whole
process is shown in Figure 13. Since the process typically
converged after 100 to 150 iterations, we set the number of
maximum iterations to 200. Similarly, the algorithm typically
converges after increasing the resolution 2 to 3 times. We
therefore set the maximum resolution to 6.

Figure 13: Typical error function for two examples. For top,
the process converged after a total of 1400 iterations, with
the minimum error for a resolution of 8 × 8 cells. Results
with higher resolution (16 × 16) were discarded due to in-
creased error. The bottom example converged with a resolu-
tion of 16 × 16 cells. For each resolution, Simulated Anneal-
ing is restarted multiple times.

Evaluation
To evaluate our optimization, we generated 10 differently-
shaped cell configurations with 3 or 4 DoF as ground truth
examples. We manually set the input and output vertex, an
input path and the anchors. We simulated the mechanism
to obtain the output path. We stored the input and output
paths and the empty low-resolution cell configuration for
the correct aspect ratio, which were the input to our opti-
mization. Two examples with target and solution are shown
in Figure 14. Although the resulting cell configurations are
different in terms of placement of rigid cells, they could re-
produce the target movement with a mean error of 2% (SD
= 3%) for input paths and 7% (SD = 4%) for output paths.
We computed the error as the sum of point-wise distances
between the respective motions paths. Note that the cell con-
figuration, the anchors and the target resolution were not
known to the optimization but were generated.

ta
rg

et
so

lu
ti

on

ta
rg

et
so

lu
ti

on

(1) (2)

Figure 14: Two of ten ground truth examples (top) we used
to test the optimization. The results in the bottom were gen-
erated without inputting the cell configuration or position
of the anchors into the optimization procedure.

Implementation
While we already discussed the optimization and simula-
tion in previous sections, we want to briefly mention the
frameworks we used. We packed the metamaterial mecha-
nism optimization, as described above, into a simple editor.
The editor allows users to draw the shape of their desired
mechanism and to set input and output paths, which the
software will optimize for. Users can use pre-defined paths
for precise motion constraints or simply draw rough paths.
Time needed to generate a cell configuration depends on
whether the solution requires a high-resolution configura-
tion. If the solution is found in a low-resolution grid, the
algorithm takes approximately 1 minute to converge on a
commodity notebook (MacBook Pro 2015 with Bootcamp).
For higher resolutions (e.g., 32 × 32 cells), finding the best so-
lution takes up to 10 minutes. We are confident that this time
can be decreased by parallelizing parts of the algorithm, e.g.,
running multiple threads of Simulated Annealing at once.

The editor is implemented in C# and uses the .NET frame-
work 4.5. We use the Windows Presentation Foundation
(WPF) as our GUI toolkit. The optimization procedure is also
implemented in C#, which calls a wrapper to our C++ simu-
lation tool. The simulation is written in C++, because it uses
IPOPT [43], as we discussed in Section 5. We will provide
the source code prior to the conference.

Limitations of the design tool. The editing capabilities of our
editor are currently limited to 2D. Furthermore, we imple-
mented only square cells so far. Triangular, rotated, or pre-
sheared cells, as we suggested in [18] are not integrated in
the current version of the editor. However, this would be a
simple extension. We also currently don’t offer mesh export
options, as we focused on the optimization. A conceivable
option would be to implement the tool as a plugin to existing
CAD tools, e.g., Autodesk Fusion 360, as they offer elaborate
modeling options for the parts that embed the metamaterial.

7 EXAMPLES
The main contribution of this work is the abstract represen-
tation of metamaterial mechanisms, which ultimately allows
an automatic generation of such metamaterials. While the
device that embeds the metamaterial is not the focus of this
work, we want to give some brief examples of how our gen-
erated metamaterials might be embedded in a device-context.
The green structures in following examples are printed using
rubber-like filament (Ninjaflex) on our consumer-grade 3D
printer (Ultimaker 2+). More transformations are listed as
examples in Appendix B.

Kinetic sculptures. One example, where metamaterial mech-
anisms might be embedded into, are kinetic sculptures, toys,
or walking automata [41]. As shown in Figure 15a, our de-
sign tool enables users to create custom walk-cycles from
metamaterials.

Custom mechanisms. Users might also want to create grip-
pers with a custom motion path. In Figure 15b, we illus-
trate embedding metamaterial mechanisms with different
motion paths as grippers for collecting items, e.g., for picking-
challenge robots. Other applications for such custom paths
are e.g., fans with a path cycle, or deflectors for sprinkler
which can be customized to sprinkle a specific area optimally.

Clock. Another simple example is an alarm clock, as depicted
in Figure 15c . The metamaterial transforms a rotary input
into an oscillating motion to strike the bells.

8 DISCUSSION & OUTLOOK
Our work aims at going beyond purely exploratory work
but provide an understanding of metamaterial mechanisms.
Our work opens way for researchers to explore, build and
use such mechanisms. Moving away from a representation

top view

a

b

c

input

input

input

Figure 15: (a) Metamaterial mechanisms can be embedded
into kinetic sculptures, or (b) implement a gripper with cus-
tom motions for, e.g., robots. (c) Another simple example is
embedding an oscillating metamaterial into an alarm clock.

that is based on cells to a higher level—the constraint graph—
allowed us to significantly reduce the space of cell configura-
tions and making computational approaches feasible. Note
that while the search space is highly reduced, it is still not
feasible to fully enumerate the space. As discussed above, a
cell configuration of 9 × 9 cells yields 1012 unique transfor-
mations (but 1024 cell configurations). We acknowledge that
immediate commercial applications are not entirely clear at
this point, since metamaterial mechanisms are still a very
young research field. We believe that an accessible design
tool allows not only users to design custom mechanisms,
but that it is a valuable step towards exploring and further
understanding the potential of cell-based materials to foster
research in the long term.

Limitations and considerations
The constraint graph and optimization allow us to gener-
ate insights into the inner workings of metamaterial mecha-
nisms and create a computational tool that enables automatic
generation. There are, however, limitations to our approach.

Transformation symmetry. For a given cell configuration,
moving an input vertex along the input path yields a transfor-
mation of the output vertex, i.e., an output path. If, however,
the output vertex is moved along the same output path, the
transformation of the input vertex is not equal to the input
path. This behavior has to be taken into account when de-
signing mechanisms that should be actuated by moving the
input and the output vertex. It can, however, also be exploited
to create more interesting and complex mechanisms.

Transformation complexity. In our experiments, we observed
that transformations between input and output paths are lim-
ited in their complexity. Specifically, we saw that the number
of inflection points between the two paths is roughly the
same. An input path with one inflection points, for example,
usually yields output paths with zero to two inflection points,
but not of arbitrary numbers.

Extending to 3D mechanisms. Our current constraint graph
models cells as constraint in length and fully defined by one
angle. This does not hold true for 3D cell configurations.
Therefore, there is no trivial extension of our approach into
the 3rd dimension. Similar to the process of this paper, to
optimize for 3D mechanisms we need to acquired an under-
standing of how interior angles in the volume change when
a cell is subject to shearing in multiple planes. Our constraint
graph must be extended to model how the new angle and
parallelism constraints of an individual cell are propagated
to their neighbors. Furthermore, the deformation energy D
(Section 5) will be adapted to minimize these constraints.
Such a basic constraint analysis is necessary for using our
software for other cell structures. However, we expect our
simulated annealing approach to work as presented. We al-
ready started investigating this interesting future work and
replaced the 2D angle constraint with the angles of a basis in
each cell as constraints, shown in our preview in Figure 16.

anchors

handle

rigid cells

Figure 16: Preview of a 3D deformedmechanismwith 2 rigid
cells.

Practical extensions
There are several practical extensions to our work that con-
cern the editor, including the simulation and generation of
mechanisms.

Adapt to material properties. We used an idealized simula-
tion that does not incorporate engineering factors such as
material properties or friction. We did so to focus on the
interaction between geometric constraints within a mecha-
nism, which could be missed when taking mechanical factors
such as transmission loss into account. While the mechanical
properties can be optimized (e.g., through high-resolution
3D printing), the underlying constraints are inherent to the
geometry. Material properties could be used to expand the
repertoire of transformations. Including other types of simu-
lation such as finite element analysis would be one beneficial

extension of the editor. This would also allow us to adaptively
change the stiffness, thus actuation force, of a mechanism.
This can be achieved by merging cells.

Extending to different cell types. Our constraint graph, and
consequently our optimization algorithm, hold true for other
cells that we previously suggested in [18], such as rotated
and pre-sheared cells. Our editor only needs to be extended
slightly to edit such cells.

geometric graph

angle
constraint

parallelism
constraint

Figure 17: Our constraint graph generalizes to the cells we
introduced in [18].

Considering temporal changes. We were concerned with the
spatial transformation of metamaterial mechanisms. An ex-
tension of the optimization would be to also include a tem-
poral component. Considering the speed of transformation
would allow features such as keyframing and easing of mo-
tion. We plan to investigate this interesting aspect by adapt-
ing our error function and add keyframing to the editor.

9 CONCLUSIONS
We analyzed metamaterial mechanisms with respect to their
topological constraints. Although the basic cells in this work
(shear and rigid cells) are simple, connecting them creates
complex interactions. We investigated these interactions,
which we modeled as a constraint graph. This representation
allows us to explore metamaterials on a more abstract level
and avoid having to rely on the raw cell structure which
exhibits a prohibitively large search space. Consequently, we
implemented our knowledge as a computational design tool
for the automatic generation of such mechanisms.
On a higher level, we think of our work as the first step

towards what we like to call heterogenous mechanical meta-
materials. We define them as metamaterials that consist of
different types of cells. Most often metamaterials consist of
cells that are topologically equivalent; all cells have the same
function, but they can vary in parameter.
Metamaterial mechanisms is one example of a material

that consists of topologically different cells. They exhibit inter-
esting behavior yet the interactions between cells are hard
to understand. In the future, we will go step-wise towards
investigating more of these heterogenous metamaterials by
creating generic tools that allow researchers to investigate
combinations of different types of cells.

REFERENCES
[1] Jeffrey K. Anderson, Larry L. Howell, Jonathan W. Wittwer, and Timo-

thy W. McLain. 2006. Piezoresistive sensing of bistable micro mech-
anism state. Journal of micromechanics and microengineering 16, 5
(2006), 943–950. https://doi.org/10.1088/0960-1317/16/5/010

[2] Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015.
LinkEdit: interactive linkage editing using symbolic kinematics. ACM
Transactions on Graphics 34, 4 (2015), 99:1–99:8. https://doi.org/10.
1145/2766985

[3] Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-
Hornung. 2014. Spin-it: Optimizing Moment of Inertia for Spinnable
Objects. ACM Trans. Graph. 33, 4 (2014), 96:1–96:10. https://doi.org/
10.1145/2601097.2601157

[4] Patrick Baudisch and Stefanie Mueller. 2017. Personal Fabrication.
Foundations and Trends in Human-Computer Interaction 10, 3-4 (2017),
165–293. https://doi.org/10.1561/1100000055

[5] Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin van
Hecke. 2017. Flexible mechanical metamaterials. Nature Reviews
Materials 2, 11 (oct 2017), 17066. https://doi.org/10.1038/natrevmats.
2017.66

[6] Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee,
Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. De-
sign and fabrication of materials with desired deformation behavior.
ACM Transactions on Graphics 29, 4 (2010), 1. https://doi.org/10.1145/
1778765.1778800 arXiv:1211.6396

[7] Xiang ’Anthony’ Chen, Stelian Coros, and Scott E. Hudson. 2018. Med-
ley: A Library of Embeddables to Explore Rich Material Properties
for 3D Printed Objects. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM Press, New York, New
York, USA. https://doi.org/10.1145/3173574.3173736

[8] Xiang ’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman,
Stelian Coros, and Scott E. Hudson. 2016. Reprise: A Design Tool for
Specifying, Generating, and Customizing 3D Printable Adaptations
on Everyday Objects. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology. ACM Press, New York, New
York, USA. https://doi.org/10.1145/3173574.3173736

[9] Xiang Anthony Chen, Y. Tao, G.Wang, R. Kang, Tovi Grossman, Stelian
Coros, and Scott E. Hudson. 2018. Forte: User-driven generative design.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Vol. 2018-April. https://doi.org/10.1145/3173574.3174070

[10] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro
Sueda, Moira Forberg, Robert Sumner, Wojciech Matusik, and Bernd
Bickel. 2013. Computational Design of Mechanical Characters. ACM
Transactions on Graphics 32, 4 (2013), 83:1–83:12. https://doi.org/10.
1145/2461912.2461953

[11] Juan Sebastian Cuellar, Gerwin Smit, Dick Plettenburg, and Amir A.
Zadpoor. 2018. Additive manufacturing of non-assembly mechanisms.
Additive Manufacturing 21 (2018), 150–158. https://doi.org/10.1016/j.
addma.2018.02.004

[12] Tobias Frenzel, Claudio Findeisen, Muamer Kadic, Peter Gumbsch, and
Martin Wegener. 2016. Tailored Buckling Microlattices as Reusable
Light-Weight Shock Absorbers. Advanced Materials 28, 28 (jul 2016),
5865–5870. https://doi.org/10.1002/adma.201600610

[13] Joshua B. Gafford, Samuel B. Kesner, Alperen Degirmenci, Robert J.
Wood, Robert D. Howe, and Conor J. Walsh. 2014. A monolithic
approach to fabricating low-cost, millimeter-scale multi-axis force
sensors for minimally-invasive surgery. In Proceedings of the IEEE
International Conference on Robotics and Automation. 1419–1425. https:
//doi.org/10.1109/ICRA.2014.6907038

[14] Aylin Gazi Gezgin and Koray Korkmaz. 2017. A New Approach to
the Generation of Retractable Plate Structures Based on One-Uniform

Tessellations. Journal of Mechanisms and Robotics 9, 4 (may 2017),
041015. https://doi.org/10.1115/1.4036570

[15] S. D. Guest and J. W. Hutchinson. 2003. On the determinacy of repeti-
tive structures. Journal of the Mechanics and Physics of Solids 51 (2003),
383–391. https://doi.org/10.1016/S0022-5096(02)00107-2

[16] Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps.
ACM Transactions on Graphics 36, 4 (jul 2017). https://doi.org/10.1145/
3072959.3073709

[17] Larry L. Howell, Spencer P. Magleby, and Brian M. Olsen. 2013. Hand-
book of Compliant Mechanisms. John Wiley and Sons.

[18] Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs,
Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and
Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology.
ACM Press, New York, New York, USA, 529–539. https://doi.org/10.
1145/2984511.2984540

[19] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. 1983. Optimization
by Simulated Annealing. Science 220, 4598 (1983), 671–680. https:
//doi.org/10.1126/science.220.4598.671

[20] Roderic Lakes. 1987. Foam Structures with a Negative Poisson’s Ra-
tio. Science 235, 4792 (feb 1987), 1038–1040. https://doi.org/10.1126/
science.235.4792.1038

[21] Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin
Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen.
2014. Build-to-Last : Strength to Weight 3D Printed Objects. ACM
Transactions on Graphics 33, 4 (2014). https://doi.org/10.1145/2601097.
2601168

[22] Jonàs Martínez, Jérémie Dumas Haichuan Song, and Sylvain Lefebvre.
2017. Orthotropic k-nearest foams for additive manufacturing. ACM
Transactions on Graphics 36, 4 (2017). https://doi.org/10.1145/3072959.
3073638

[23] Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus
Gross, and Bernhard Thomaszewski. 2017. A computational design
tool for compliant mechanisms. ACM Transactions on Graphics 36, 4
(2017), 1–12. https://doi.org/10.1145/3072959.3073636

[24] M. J. Mirzaali, Shahram Janbaz, M. Strano, L. Vergani, and Amir A. Zad-
poor. 2018. Shape-matching soft mechanical metamaterials. Scientific
Reports 8, 965 (2018), 1–7. https://doi.org/10.1038/s41598-018-19381-3

[25] Stefanie Mueller, Pedro Lopes, and Patrick Baudisch. 2012. Interac-
tive Construction: Interactive Fabrication of Functional Mechanical
Devices. In Proceedings of the 25th annual ACM symposium on User
interface software and technology. ACM Press, New York, New York,
USA, 599. https://doi.org/10.1145/2380116.2380191

[26] Jifei Ou, Zhao Ma, Jannik Peters, Sen Dai, Nikolaos Vlavianos, and
Hiroshi Ishii. 2018. KinetiX - designing auxetic-inspired deformable
material structures. Computers & Graphics 75 (oct 2018), 72–81. https:
//doi.org/10.1016/j.cag.2018.06.003

[27] Johannes T.B. Overvelde, James C. Weaver, Chuck Hoberman, and
Katia Bertoldi. 2017. Rational design of reconfigurable prismatic
architected materials. Nature 541, 7637 (2017), 347–352. https:
//doi.org/10.1038/nature20824

[28] Huaishu Peng, Jimmy Briggs, Cheng-Yao Wang, Kevin Guo, Joseph
Kider, Stefanie Mueller, Patrick Baudisch, and François Guimbretière.
2018. RoMA: Interactive Fabrication with Augmented Reality and
a Robotic 3D Printer. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM Press, New York, New
York, USA, 1–12. https://doi.org/10.1145/3173574.3174153

[29] Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017.
Computational design and automated fabrication of kirchhoff-plateau
surfaces. ACM Transactions on Graphics 36, 4 (2017), 1–12. https:
//doi.org/10.1145/3072959.3073695

https://doi.org/10.1088/0960-1317/16/5/010
https://doi.org/10.1145/2766985
https://doi.org/10.1145/2766985
https://doi.org/10.1145/2601097.2601157
https://doi.org/10.1145/2601097.2601157
https://doi.org/10.1561/1100000055
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1145/1778765.1778800
http://arxiv.org/abs/1211.6396
https://doi.org/10.1145/3173574.3173736
https://doi.org/10.1145/3173574.3173736
https://doi.org/10.1145/3173574.3174070
https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1016/j.addma.2018.02.004
https://doi.org/10.1016/j.addma.2018.02.004
https://doi.org/10.1002/adma.201600610
https://doi.org/10.1109/ICRA.2014.6907038
https://doi.org/10.1109/ICRA.2014.6907038
https://doi.org/10.1115/1.4036570
https://doi.org/10.1016/S0022-5096(02)00107-2
https://doi.org/10.1145/3072959.3073709
https://doi.org/10.1145/3072959.3073709
https://doi.org/10.1145/2984511.2984540
https://doi.org/10.1145/2984511.2984540
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1145/2601097.2601168
https://doi.org/10.1145/2601097.2601168
https://doi.org/10.1145/3072959.3073638
https://doi.org/10.1145/3072959.3073638
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1038/s41598-018-19381-3
https://doi.org/10.1145/2380116.2380191
https://doi.org/10.1016/j.cag.2018.06.003
https://doi.org/10.1016/j.cag.2018.06.003
https://doi.org/10.1038/nature20824
https://doi.org/10.1038/nature20824
https://doi.org/10.1145/3173574.3174153
https://doi.org/10.1145/3072959.3073695
https://doi.org/10.1145/3072959.3073695

[30] Romain Prévost, Wojciech Jarosz, Moritz Bächer, Wojciech Jarosz, and
Olga Sorkine-Hornung. 2016. Balancing 3D Models with Movable
Masses. In Vision, Modeling & Visualization. The Eurographics Associ-
ation, 8. https://doi.org/10.2312/vmv.20161337

[31] D.Janaki Ram, T.H. Sreenivas, and K.Ganapathy Subramaniam. 1996.
Parallel Simulated Annealing Algorithms. J. Parallel and Distrib. Com-
put. 37, 2 (1996), 207–212. https://doi.org/10.1006/jpdc.1996.0121

[32] Pedro M. Reis, Heinrich M. Jaeger, and Martin van Hecke. 2015. De-
signer Matter: A perspective. Extreme Mechanics Letters 5 (2015), 25–29.
https://doi.org/10.1016/j.eml.2015.09.004

[33] Michael L. Rivera, Melissa Moukperian, Daniel Ashbrook, Jennifer
Mankoff, and Scott E. Hudson. 2017. Stretching the Bounds of 3D
Printing with Embedded Textiles. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. 1–12. https:
//doi.org/10.1145/3025453.3025460

[34] Thijs Roumen, Bastian Kruck, Tobias Dürschmid, Tobias Nack, and
Patrick Baudisch. 2016. Mobile Fabrication. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology.
ACM Press, New York, New York, USA, 3–14. https://doi.org/10.1145/
2984511.2984586

[35] Valkyrie Savage, Colin Chang, and Björn Hartmann. 2013. Sauron:
embedded single-camera sensing of printed physical user interfaces.
In Proceedings of the annual ACM symposium on User interface software
and technology. 447–456. https://doi.org/10.1145/2501988.2501992

[36] Krishna Kumar Saxena, Raj Das, and Emilio P. Calius. 2016. Three
Decades of Auxetics Research – Materials with Negative Poisson’s
Ratio: A Review. Advanced Engineering Materials 18, 11 (nov 2016),
1847–1870. https://doi.org/10.1002/adem.201600053

[37] Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara
Daraio, and Markus Gross. 2015. Microstructures to control elasticity
in 3D printing. ACM Transactions on Graphics 34, 4 (2015). https:
//doi.org/10.1145/2766926

[38] Christian Schumacher, Steve Marschner, Markus Gross, and Bernhard
Thomaszewski. 2018. Mechanical Characterization of structured sheet
materials. ACM Transactions on Graphics 37, 4 (2018). https://doi.org/
10.1145/3197517.3201278

[39] Hamed Seifi, Anooshe Rezaee Javan, Arash Ghaedizadeh, Jianhu Shen,
Shanqing Xu, and Yi Min Xie. 2017. Design of hierarchical structures
for synchronized deformations. Scientific Reports 7, January (2017),
1–7. https://doi.org/10.1038/srep41183

[40] Sicong Shan, Sung H. Kang, Jordan R. Raney, Pai Wang, Lichen Fang,
Francisco Candido, Jennifer A. Lewis, and Katia Bertoldi. 2015. Multi-
stable Architected Materials for Trapping Elastic Strain Energy. Ad-
vanced Materials 27, 29 (2015), 4296–4301. https://doi.org/10.1002/
adma.201501708 arXiv:1207.1956

[41] Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio
Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational
Design of Linkage-Based Characters. ACM Transactions on Graphics
33, 4 (2014), 64:1–64:9.

[42] Nurcan Gecer Ulu, Stelian Coros, and Levent Burak Kara. 2018. Design-
ing coupling behaviors using compliant shape optimization. Computer-
Aided Design 101 (2018), 57–71. https://doi.org/10.1016/j.cad.2018.03.
008

[43] Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation
of an interior-point filter line-search algorithm for large-scale nonlin-
ear programming. Mathematical Programming 106, 1 (01 Mar 2006),
25–57. https://doi.org/10.1007/s10107-004-0559-y

[44] Guanyun Wang, Tingyu Cheng, Youngwook Do, Humphrey Yang, Ye
Tao, Jianzhe Gu, Byoungkwon An, and Lining Yao. 2018. Printed Paper
Actuator: A Low-cost Reversible Actuation and Sensing Method for
Shape Changing Interfaces. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems - CHI ’18. ACM Press, New

York, New York, USA, 1–12. https://doi.org/10.1145/3173574.3174143
[45] Christian Weichel, John Hardy, Jason Alexander, and Hans Gellersen.

2015. ReForm: Integrating Physical and Digital Design through Bidirec-
tional Fabrication. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. ACM Press, New York, New
York, USA, 93–102. https://doi.org/10.1145/2807442.2807451

[46] ChristianWeichel, Manfred Lau, David Kim, Nicolas Villar, andHansW.
Gellersen. 2014. MixFab: A Mixed-reality Environment for Personal
Fabrication. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 3855–3864. https://doi.org/10.1145/2556288.
2557090

[47] Karl D. D. Willis, C. Xu, K.-J. Wu, G. Levin, and Mark D. Gross. 2011. In-
teractive Fabrication: New Interfaces for Digital Fabrication. In Proceed-
ings of the Fifth International Conference on Tangible, Embedded, and
Embodied Interaction. 69–72. https://doi.org/10.1145/1935701.1935716

[48] Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard
Thomaszewski. 2017. MetaSilicone: Design and Fabrication of Com-
posite Silicone with Desired Mechanical Properties. ACM Transactions
on Graphics 36, 6 (nov 2017), 1–13. https://doi.org/10.1145/3130800.
3130881

[49] Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd
Bickel. 2017. Functionality-aware retargeting of mechanisms to 3D
shapes. ACM Transactions on Graphics 36, 4 (jul 2017), 1–13. https:
//doi.org/10.1145/3072959.3073710

A ENUMERATING ALL UNIQUE MECHANISMS
As noted in Section 4, all edges in a row or column necessar-
ily belong to a single connected component. Starting with
an empty n ×m grid we have n +m connected components.
Introducing a rigid cell joins two connected components
and removes one degree of freedom. Suppose we want to
enumerate all unique mechanisms with k degrees of free-
dom. This amounts to k connected components where we
differentiate between x empty columns, y empty rows and
z components formed by merging rows and columns using
rigid cells. There are

(n
x

)
ways to choose the columns and(m

y

)
ways to choose the rows. The remainingm −y rows and

n − x columns can be arbitrarily partitioned into z sets. The
Stirling number of the second kind counts the number of
these partitions as S(n − x, z) and S(m − y, z) where we use
the convention S (a,b) = 0 for a < b. The z sets of rows and
columns can be connected in z! ways. This gives

Gn,m (x,y, z) =

(
n

x

) (
m

y

)
S (n − x, z) S (m − y, z) z!

different possibilities. Summing over all values for x, y and z
we obtain the number of all possible unique mechanisms on a
n×m grid. We empirically verified this number by analyzing
all possible configurations on grids with n < 5.

https://doi.org/10.2312/vmv.20161337
https://doi.org/10.1006/jpdc.1996.0121
https://doi.org/10.1016/j.eml.2015.09.004
https://doi.org/10.1145/3025453.3025460
https://doi.org/10.1145/3025453.3025460
https://doi.org/10.1145/2984511.2984586
https://doi.org/10.1145/2984511.2984586
https://doi.org/10.1145/2501988.2501992
https://doi.org/10.1002/adem.201600053
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2766926
https://doi.org/10.1145/3197517.3201278
https://doi.org/10.1145/3197517.3201278
https://doi.org/10.1038/srep41183
https://doi.org/10.1002/adma.201501708
https://doi.org/10.1002/adma.201501708
http://arxiv.org/abs/1207.1956
https://doi.org/10.1016/j.cad.2018.03.008
https://doi.org/10.1016/j.cad.2018.03.008
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1145/3173574.3174143
https://doi.org/10.1145/2807442.2807451
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/1935701.1935716
https://doi.org/10.1145/3130800.3130881
https://doi.org/10.1145/3130800.3130881
https://doi.org/10.1145/3072959.3073710
https://doi.org/10.1145/3072959.3073710

B EXAMPLE TRANSFORMATIONS

Input Result Deformed Input Result Deformed

Figure 18: Examples of mechanisms generated with our algorithms. Note that for every example, two paths and the empty cell
configuration was given. Anchor positions and rigid cell assignments were automatically determined.

	Abstract
	1 Introduction
	Understanding metamaterial mechanisms
	Contributions & limitations

	2 Related work
	3 Analysis of cell interactions
	Understanding the constraints
	Determining the degrees of freedom
	Building the constraint graph
	The influence of anchors

	4 Reducing the search space
	5 Simulating the motion
	Evaluation

	6 Optimization of cell patterns
	Overview
	Input and representation
	Setting anchors
	Generation of cell configurations
	Evaluation
	Implementation

	7 Examples
	8 Discussion & outlook
	Limitations and considerations
	Practical extensions

	9 Conclusions
	References
	A Enumerating all unique mechanisms
	B Example transformations

