

Digital Mechanical Metamaterials
Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch

Hasso Plattner Institute, Potsdam, Germany
{firstname.lastname}@hpi.de

ABSTRACT
In this paper, we explore how to embody mechanical com-
putation into 3D printed objects, i.e., without electronic sen-
sors, actuators, or controllers typically used for this purpose.
A key benefit of our approach is that the resulting objects can
be 3D printed in one piece and thus do not require assembly.
We are building on 3D printed cell structures, also known as
metamaterials. We introduce a new type of cell that propa-
gates a digital mechanical signal using an embedded bistable
spring. When triggered, the embedded spring discharges and
the resulting impulse triggers one or more neighboring cells,
resulting in signal propagation. We extend this basic mecha-
nism to implement simple logic functions. We demonstrate
interactive objects based on this concept, such as a combina-
tion lock. We present a custom editor that allows users to
model 3D objects, route signals, simulate signal flow, and
synthesize cell patterns.

Author Keywords
Metamaterials; Fabrication; Programmable Matter

ACM Classification Keywords
H.5.m. [Information interfaces and presentation] Misc.

INTRODUCTION
Personal fabrication machines, such as 3D printers, allow us-
ers to make custom objects. While early work on 3D printing
revolved around designing the outside of such objects [24,
32], recently researchers started exploring 3D printing as a
means to design the inside of objects. Applications include
moving objects’ centers of gravity so as to make them
stand [20] or spin [1].

Pushing this further, researchers created objects that consist
internally of a large number of 3D cells arranged on a regular
grid [15]. Since each cell is designed to perform a specific
deformation, objects that entirely consist of such cells liter-
ally offer thousands of degrees of freedom. Such structures
are also known as metamaterials [18].

Figure 1: (a) This combination door lock is implemented as a
digital mechanical metamaterial, i.e., a single block of material
based on a regular grid of cells. It allows users to input a nu-
meric code, it processes the code, checks its correctness, and
unlocks the latch. (b) Under the hood, the lock consists of an
array of cells that transmit and process a mechanical signal.

While metamaterials were initially understood as materials,
we recently proposed to think of them as machines; such
metamaterial mechanisms [10] consist of a single block of
material, the cells of which play together in a well-defined
way in order to achieve macroscopic movement. We used
this principle previously to implement simple mechanical
objects, such as a door latch (Figure 7).

Such analog machines, however, are limited in terms of
complexity. As forces are passed on from one cell to the next,
they are damped and the activation energy dissipates, caus-
ing the mechanical “signal” to decay exponentially. This lim-
its the number of mechanisms that can be concatenated and
therefore the complexity of the machine.

In this paper, we explore how to extend this concept towards
digital mechanisms. Combining metamaterial mecha-
nisms [10] with concepts from mechanical computing and
mechanical signal propagation [16, 23], we introduce a new
type of cell that propagates a digital mechanical signal, i.e.,
it counteracts signal decay and thus allows signals to pass
through an arbitrary number of cells. We extend this basic
mechanism to implement simple logic functions.

To illustrate this concept, Figure 1 shows a combination lock
implemented using digital metamaterials. The device offers
ten digit buttons on the front. Users tap these buttons to enter
their code, then press the ‘open’ button to unlock the door.

Authors’ copy.

Published in Proceedings of CHI 2017,
May 06 – 11, 2017, Denver, CO, USA

BASICS OF DIGITAL MECHANICAL METAMATERIALS
Digital metamaterials are based on a new type of cell that
propagates a mechanical signal reinforced by an embedded
bistable spring.

The bit cell is the main underlying mechanism
Figure 2 shows the key element behind digital metamaterials,
which we call bit cell. Bit cells contain a bistable spring,
which allows them to take on two discrete states. Figure 2a
shows the bit cell in its tense state. (b) When triggered, the
spring discharges, causing the cell to switch from its tense
state to its relaxed state.

Figure 2: (a) When triggered, this bit cell changes its state

from tense to (b) relaxed.

As shown in Figure 3, bit cells feature an input port and out-
put port. A mechanical impulse that reaches the input port
triggers the cell, which creates an impulse at the output port.
Because discharging the spring releases mechanical energy,
the impulse at the output port is larger than the required trig-
ger impulse at the input port.

Figure 3: Bit cells offer an input and an output port.

As illustrated by Figure 4, this allows us to concatenate bit
cells in a way that allows cells to trigger their immediate
neighbors, resulting in a simple signal propagation mecha-
nism similar to [23].

Figure 4: Concatenating bit cells creates a signal transmission.
(a) Initially all bit cells are in their tense position. (b) Trigger-
ing the leftmost cell causes the signal to propagate through all

cells from left to right.

The combination lock example
Bit cells and the resulting concept of signal propagation al-
low us to implement a hierarchy of digital mechanisms of
increasing complexity. We discuss these logic functions and
mechanisms in full detail later in this paper, as well as a sim-
ple manual recharge mechanism to set discharged springs
back into their tense state. However, Figure 5 provides a
rough overview of the different elements that implement the
combination lock.

Figure 5: Our door lock consists of 82 cells, which implement
the signal transmisison, the evaluation of each digit input by

the user, an AND gate, and one amplifier cell with a pre-
amplification step to move the blocking bolts sufficiently.

(1) To input the code, users tap one of the digit buttons on
the front, which changes the state of the digit evaluation
cells. The device contains 10 of these—one for each possible
digit. (2) When the user pushes the ‘open’ button, three sig-
nal transmission lines are set off simultaneously; two of
which run through the digit evaluation units and (3) set the
state of the AND gate. The AND gate evaluates the correct-
ness of the code by computing a logical AND the two rows
of digits input by the user. The third signal transmission line
runs from the bottom left towards the right, around the cor-
ner, and upwards where (4) the signal is bifurcated. This al-
lows triggering (5) a double-sized amplifier cell that actuates
the bolts to unblock the door.

Figure 6 shows a close-up of these bolts. (a) As long as the
bolts are in place, they prevent the shearing cells in the mid-
dle from shearing, thereby blocking the door. (b) When the
bolts are retracted, the shearing cells can shear and pushing
down the handle retracts the latch—as discussed in [10]. This
is where our digital metamaterials connect to the analog met-
amaterial door latch mechanism.

Figure 6: We effectively lock the latch mechanism by stiffen-
ing the shearing area that enables it. We do so by inserting

bolts. Once users entered the key code correctly, our lock sig-
nal retracts the bolt and enables the latch mechanism.

CONTRIBUTION, BENEFITS & LIMITATIONS
Our main contribution is the concept of digital mechanical
metamaterials. They allow integrating computational abili-
ties into the structure of 3D printed objects. We provide a
modular system consisting of digital cells (hardware) and an
editor (software) that provides a toolkit to users, enabling
them to create new digital mechanisms.

While analog metamaterial mechanisms are subject to damp-
ing, which causes the mechanical “signal” to decay exponen-
tially and limits the number of ‘steps’ that can be performed,
digital mechanical metamaterials enable transmitting signals
through an arbitrary number of cells.

When we contrast digital mechanical metamaterials to the
traditional approach of augmenting objects with electronic
microcontrollers, sensors, and actuators [26, 31], our ap-
proach results in an entirely mechanical solution and can be
produced entirely using a 3D printer. However, since our ap-
proach lacks loops, clocks, and memory, our approach is lim-
ited to much simpler devices.

RELATED WORK
We build on previous work in interactive personal fabrica-
tion, mechanical metamaterials, and analog computers.

Personal fabrication
3D printers and other personal fabrication machines simplify
the process for users to make custom objects. Besides print-
ing decorative object, users often create functional objects
the functionality of which is determined by their external
shape [32, 14, 7]. Integrating heating elements during the
print process allows to change the shape after the fabrication
process to adapt, e.g. to users’ bodies [9].

To fabricate mechanical assemblies, users can print the struc-
tural parts from rigid plastic (e.g., links, axles, bearings,
gears, etc.) and assemble them to construct machines [2].
Such assemblies can also be printed in one process [6]. The
usability of existing mechanical objects can be enhanced by
fabricating additional handles or contraption using personal
fabrication machines [7].

To allow users to go beyond mechanical systems made on
their personal fabrication machines, researchers proposed

techniques to integrate sensors and microcontrollers into ob-
jects. They range from (capacitive) position sensing [11, 29,
26] to sensing light beams for detecting user interaction [33],
to complex systems like integrating a camera to track mark-
ers [25]. Adding sensors to 3D printed parts after they were
fabricated even enables users to make adaptations to their
everyday objects and to effectively customize the way they,
for example, interact with their toaster [22]. Peng et al. re-
cently demonstrated the idea of 3D printing motors, which
allows fabricating arbitrary objects with integrated motors in
the same process, enabling complex interactive objects with
actuation capabilities [19].

While complex tasks, such as image processing are not pos-
sible in purely mechanical systems, we argue that we can in-
tegrate mechanical and simple information processing capa-
bilities within a 3D printed object to alter its properties. To
do so, we design the internal structure of 3D printed objects.

Designing the internal structure
Researchers in HCI and computer graphics started to alter the
internal structure of 3D printed objects to, e.g., optimize their
strength-to-weight ratio [12], to move their center of gravity
in order to balance objects [20], or to allow arbitrary shapes
to spin [3]. Vidimce et al. recently proposed a system that
allows users to create and edit the internal structure and ma-
terial distribution of 3D printed objects [30].

Mechanical metamaterials
Metamaterials are “artificial structures with mechanical
properties that are defined by their usually repetitive cell pat-
terns, rather than the material they are made of [18]. Met-
amaterials consist of large numbers of 3D cells organized on
a regular grid. Since each cell can be designed to deform in
a specific way [17, 27], they literally offer thousands of de-
grees of freedom.

Based on this concept, researchers have created objects with
unusual behavior, such as objects that collapse abruptly
when compressed [15], that shrink in two dimensions upon
one-dimensional compression [8], or objects that combine
layers of different degrees of stiffness (i.e., soft and hard
cells) in order to emulate different materials, such as leather
or felt [4].

However, metamaterials are usually seen as materials.
In [10], we proposed thinking of metamaterials as machines
instead. Figure 7 shows one of the objects we demon-
strated—a door latch implemented as a single part.

Figure 7: Metamaterial mechanisms [10].

In this paper, we extend on the concept of metamaterial
mechanisms by introducing the notion digital signal pro-
cessing, which allows us to produce more complex mecha-
nisms, such as the combination lock shown in Figure 1. Our
hardware design is inspired by mechanical wave propagation
using bistable springs [16, 23].

Mechanical logic systems
Our work combines metamaterials with concepts from me-
chanical computing. Since we use bistable springs for storing
energy, we build our logic based on three-state logic [28],
which assumes the additional output state ‘high impedance’.
This allows us to distinguish a cell being in its tense state
from when it is in its relaxed state.

One approach to implement mechanical logic systems is dual
rail logic [5]. It duplicates the signal path to provide a distinct
0-signal. However, this comes at the cost of space. Rod logic
presents an interesting system that can scale to nanotechnol-
ogy [13]. It is based on rods that can let signals pass, or block
them. We build our signal transmission on this work.

ROUTING SIGNALS BASED ON CELLS
In this and the following section, we now show the individual
cells that implement the combination door lock we showed
in Figure 5. We begin with the cell types that allow us to
route signals through 3D objects. We already looked at signal
propagation along a straight line (Figure 4); in this section,
we demonstrate how to route signals around corners, across
other signal lines, and how to bifurcate signals.

Routing signals is important because 3D printed objects can
have arbitrary shape and routing allows transmitting a signal
from where it emerges to where the information is needed.
For the door lock, for example, we route users input from the
digit inputs to the door latch mechanism—which is located
elsewhere in our object.

The more specialized routing cells are all based on bit cells.
However, we position their output ports to be oriented to-
wards the neighbor cell we want to trigger. So while the bit
cells in Figure 4 feature an output port on the side opposite
to the input port, the cell shown in Figure 8 redirects the sig-
nal by 90° by adding a beam to the arm of our bistable spring.
This beam rotates with the arm of the spring, allowing it to
tap the input port of the rotated cell on the top right.

Figure 8: We use a new type of output port to redirect the sig-
nal by 90°. We exploit the rotational movement of the spring

and attach a beam that taps its neighboring cell.

As illustrated by Figure 9, we can route signals in 3 dimen-
sions by concatenating multiple such mechanisms. Here we
route the signal from the x/y plane to the x/z plane to the y/z
plane.

Figure 9: (a) Rotating the receiving cell allows us to redirect

signals from one plane to another. (b) Concatenating three as-
semblies allows us to route signals in 3D.

Figure 10 shows a specialized three-cell mechanism that al-
lows two signals to pass each other in minimal space. We use
a crossbar that reaches from the output port of the left cell to
the input port of the right cell that spans across the middle
cell.

Figure 10: We cross signals by running a crossbar across an-

other cell.

Figure 11 shows two mechanisms that bifurcate signals. The
design shown in (a) triggers two parallel signal lines. The de-
sign shown in (b) triggers two signal lines oriented in oppo-
site directions. Both designs exploit the fact that our bistable
springs require less energy to be triggered than they output,
which allows triggering two cells from one.

Figure 11: We can bifurcate signals (a) in a parallel manner or
(b) let the two signals run in opposite directions.

Figure 12 shows how we merge two signals. This is an inter-
esting construct, because it implements an OR gate.

Figure 12: We use the opposite assembly to merge signal as we

did to bifurcate them. This implements an OR gate.

LOGIC FUNCTIONS
To implement logic functions, we need to go beyond merely
transmitting signals to also evaluating signals, which we
achieve by blocking them. In the combination lock from Fig-
ure 5, we block signals for wrong digit inputs so that the door
stays blocked. Later in this section, we present cell arrange-
ments that implement basic logic, such as AND or NAND.

Blocking signals using gate cells
To allow for asynchronous input, we have designed cells ca-
pable of storing the first input that reaches them and do not
act until the last signal has been received. We call these cells
gate cells. Our approach is based on rod logic [13].

As illustrated by Figure 13a these cells work by placing a
“blocker” across their neighboring cell. When the cell on the
right is triggered before the cell on the left, the blocker is
aligned with the output port of the right cell so that it cannot
pass and signal is blocked. However, triggering the left cell,
as shown in Figure 13b, moves the blocker out of the way
and the signal can pass through. The position of the blocker
can also be defined to initially let signals through and only
after actuation to block signals, as shown in Figure 13cd.

a b

c d

Figure 13: Gate cells validate signals and can be configures to
block signals (a-b) or let signals pass (c-d) in their tense state.

Figure 14 shows the design of the two cells that form the gate
cell. Each crossbar has a blocker attached on its underside.

Figure 14: We position a blocking element that is intended to

either block the signal output or let it pass.

Logic functions based on gate cells
We can concatenate multiple gate cells to create combina-
tional logic functions. Figure 15 uses simplified symbols to
illustrate how the positions of the blockers are configured to
implement the function A B C D E. The positive
input cells A, C, and D need to be triggered to move the
blocker out of the way and let the signal pass. The negated
inputs B and E are implemented by positioning the blocker
so that they let the signal pass when they are not triggered
and block the signal otherwise.

A B C D E

a

b

relaxed tense
Figure 15: (a) When all inputs are tense, the signal cannot
pass. (b) Triggering the correct inputs, here A, C, and D,

moves the blockers so that the signal can pass.

If we rename the inputs of the logic function that is shown in
Figure 15 from AE to 04, it implements a 5-digit code
evaluation. To implement the combination lock with 10 dig-
its, we add a second row of inputs. Now we have two logic
functions (one in each row), which both need to be correct,
thus we add an AND gate. Figure 16 illustrates that the key
code is ‘0 2 3 8’.

Again, we use our gate cells to employ the AND gate. Each
code evaluation row has a gate cell at the end. Only if all the
inputs of the corresponding row were correct, the blocker is
moved out of the way for a third signal to pass, the evaluation
signal.

1 2 3 40

6 7 8 95

evaluation
signal

AND gate

Figure 16: We add an AND gate to validate the two rows that

yield the 10-digit.

Combinational logic using an evaluation signal
Our implementation of the AND gate has three inputs,
namely two values and one additional evaluation signal. We
add this additional signal because our mechanical computa-
tion is fundamentally different from electronic circuits, yet
adding only one single signal allows us to implement any
Boolean predicate without any electronics.

A ’signal’ within our system is not an applied voltage, but an
impulse, i.e., a mechanical force within the object. This im-
pulse changes the system state by changing physical proper-
ties of the material, such as the position of the blockers. Since
we block invalid signals, the output of gate cells is no signal
instead of a 0-signal (logical low). However, not receiving a
signal is indistinguishable from a dormant system. This
means that we cannot provide an 0-signal that can serve as
an input to the next gate, as in classical electronic circuits.

Despite this, we are still able to employ combinational logic
within our materials. The most space efficient way is to inte-
grate the inversion into logic functions, e.g., by using a NOR
instead of an OR. Figure 17 illustrates a selection of logic
gates implemented with our digital cells. Note that we show
a different OR gate compared to the one shown in Figure 12.
The one shown here uses the general-purpose assembly that
is also used in the NOT and NAND gate.

We add the additional evaluation signal as a second compu-
tation step. After the inputs are provided to the system, we
send a signal off that evaluates the inputs in order to produce
output. Independent of the complexity of the logic, only one
single evaluation signal is necessary, since it can be furcated,
merged, and routed through the material. Race conditions
within operations can be resolved by adapting the length of
signal paths.

input output in = 0 out = 1

ev
al

ua
tio

n
si

gn
al

in = 1 out = 0

ev
al

ua
tio

n

A B outputNAND

ev
al

ua
tio

n

A B outputOR

A BNOR

ev
al

ua
tio

n

output

ev
al

ua
tio

n

A BAND

output

Figure 17: Only one additional signal allows us to implement
combinational logic, despite not having a traditional 0-signal.

AMPLIFYING THE OUTPUT
While the cells that implement the signal transmission can be
arbitrarily small, the output cells that move material to
change the material properties might need to produce a cer-
tain amount of movement or force.

In the example of the door lock, we need to move the bolts
sufficiently far into the door latch’s structure to stiffen it. We
use what we call an amplifier cell, which is inspired by the
metaphor of operational amplifiers in the electronics domain.
Such an amplifier cell, as shown in Figure 18, is a cell that is
doubled in size. This allows us to add a larger spring to pro-
duce more stroke length.

Figure 18: We amplify the stroke length of our output by go-
ing from small cells to a double-sized cell.

To transition from small cells to bigger cells, we bifurcate
the signal. This gives us the energy of two cells, which to-
gether trigger the spring within the amplifier cell. In our door
lock example, our 30 mm amplifier cell moves the bolts by
6 mm as compared to the stroke length of 3 mm of the 15 mm
bit cells.

RECHARGING
After the springs were triggered and they are in their relaxed
state, they need to be reset to their tense state before the com-
putation can be run again. To do so, we designed a small lid
on top of each cell, which uses the cell’s third dimension to
recharge the spring. Figure 19 shows how as the lid is pushed
down, the attached wedges move the spring backward to its
tense position. We use an additional plate to push multiple
recharge lids at the same time. This design enables one re-
charge action for every plane of computation. We added a
small bump on the underside of the lid, which causes the lid
to spring back upward in order to not hinder the signal trans-
mission between the cells.

Figure 19: (a) Each cell features a lid with wedges, pushing it

(b) recharges the spring underneath.

ADDITIONAL APPLICATION EXAMPLE
We see digital mechanical metamaterials being particularly
useful for objects that have (1) many mechanical inputs (e.g.,
the code lock), and/or (2) many mechanical outputs (e.g., the
following example of a plant pot), and (3) which are not fre-
quently reconfigured. For example, the density plant pot
might be reconfigured when seasons change, or the door
might be locked once a day. In contrast, for objects that re-
quire frequent updates (e.g., displays) or more complex pro-
gramming involving loops, etc., we recommend traditional
electronics.

Example: plant pot
Figure 20 shows an example of a plant pot, where (a) users
input the plant’s size (smalllarge) and its water demands
(littlemuch) using sliders. This triggers the computation in
the bottom layer of the pot, which determines (b) how many
density cells will be closed. After users configured the pot’s
density, (c) they place it into a cachepot with water. The den-
sity of the plant pot now determines how fast water can pass
through to the plant.

Figure 20: We implement a plant pot that changes its density

based on user input of the plant’s size and water demands.

WATER REQUIREMENTS

small

large

P
LA

N
T

 S
IZ

E

little high

density cells
going upward

5

53 4

4 5 6

8

12

6

Figure 21: The weighted computation of the plant pot’s den-
sity ensures that small plants get enough water by preventing

some density cells from closing. The numbers indicate how
many density cells are open for each parameter combination.

We use gate cells to change the weight of the parameters of
the plant pot example. Figure 21 shows that by simply plac-
ing gate cells along the diagonal, we give more weight to the
low values of the parameters. Since the gate cells prevent the
signal from passing through, they prevent all density cells
from closing, so that even for a small plant with little water
demand the plant pot’s permeability is 25% (3 out of 12 den-
sity cell rows remain open).

FABRICATION OF CELLS
We print our prototypes from the commonly available fila-
ments ABS and PLA. While our cells are designed to be
printed in an assembled state, we tend to print the parts of
our prototypes separately. This allows us to print all elements
without support material, which tends to be faster than the
single-part design that requires dissolving the support mate-
rial. We printed the springs from PLA using the Ulti-
maker 2+ 3D printer, and the frames that hold the springs
from ABS on our Dimension SST 1200es. Our cell size is
15 mm for all our prototypes with a printed spring thickness
of 0.4 mm.

The cell shown in Figure 22 is printed in an assembled state.
We had it made at shapeways using their “frosted detail plas-
tic” material, which is a UV cured acrylic polymer that is
printed using the MultiJet Modeling process.

Figure 22: A cell printed fully assembled using shapeways’

“frosted detail plastic” material.

We empirically tested how the cells miniaturize while retain-
ing the same stress values using Autodesk Fusion’s simula-
tion. The results showed that reducing the spring thickness
to ½ allows it to be shortened to ¼ of its length, i.e., to 1 64ൗ of
the cell volume. For example, a 0.2 mm thick spring allows
for a cell size of 3.75 mm, which is a matter of printer reso-
lution.

BISTABLE SPRING DESIGN
The bistable spring in our cells differs from a typical bistable
spring that is shown in Figure 23b, which is a simple pre-
bent beam that is fixed within rigid walls [21]. However,
such designs have very high width-to-length ratios, which do
not utilize the space within a rotation-invariant cubic cell
well.

a b

Figure 23: (a) The spring we use in our bit cells is longer and

thus weaker than (b) conventional bistable springs. Or, for the
same force, our cells produce more stroke length.

Figure 23 illustrates that our spring design includes an addi-
tional ‘loop’, which prolongs the beam and therefore makes
it weaker, i.e., it requires less force to be triggered and
charged. We measured 45% less force required to charge our
type of spring compared to the conventional spring. Another
way to view it is that our longer springs produce more output
length (by 23% according our measurements) while requir-
ing similar force.

Note that our cells incorporate two connected springs. This
is a common technique [21] for increasing the stability of bi-
stable springs during the so-called ‘snap-through’, i.e., the
point where the spring is compressed the most as it is forced
to its other second position.

TECHNICAL EVALUATION
The geometry of our spring allows us to make limited
changes in stroke length and force by varying the spring pa-
rameters. For example, we used slightly stronger springs in
the plant pot example to compensate for the higher density
of water. While the output of bit cells usually needs to be
only strong and far enough to trigger the neighbor cell, the
output cells may have to meet specific requirements in terms
of amount of force or stroke length.

Our evaluation informs the geometrical spring parameters
for achieving bistability and the maximum possible fan-out
of a cell, i.e., how many cells can be triggered by one single
cell.

Independent variables: We compared a total of 75 springs of
our design where we varied three parameters independently:
(1) the arm angle, (2) the length of the bent bridge in the mid-
dle, and (3) the strength of the bridge, varied trough changing
its buckling magnitude and its thickness concurrently. We
varied the values for the bridge strength from 1.05 times the
normal spring thickness to 1.85 times, and a buckle distance
from 8% of the bridge length to 40%. The spring thickness is
limited by the 3D printer’s resolution; we use 0.18 mm.
Bridge length values ranged from 45% to 85% the total dis-
tance between the walls. We tested these values for 20°, 30°
and 40° arm angles. This yields 25 springs for each arm an-
gle.

arm angle buckle

length

thickness

Figure 24: We vary the parameters of bridge length and

bridge strength for three different arm angles each. We meas-
ure the stroke length and the forces for charging and trigger-

ing the springs, as well as their output energy.

Dependent variables: We measured (1) the force it takes to
push a spring to its tense position, (2) the force necessary to
trigger the spring, (3) its stroke length, and (4) the force it
outputs when triggered.

Test setup: Figure 25 shows our test setup. We placed a ruler
(error 0.5 mm) under the spring to measure the stroke length.
We used a force gauge with an error of 0.05 N, which was
constrained to linear movement centered to the spring and
precisely moved by a threaded rod. We pushed the force
gauge against the spring to measure the charge energy, we
released the pressure while slowly moving the force gauge
backward to measure the output energy, and we measured
the trigger energy by pushing the rotated spring.

Figure 25: We measure the forces using a force gauge (error
0.05 N), and the stroke length using a ruler (error 0.5 mm).

Results
Figure 26 shows charge, output, and trigger energy and
stroke lengths for 50 springs. Empty fields denote springs
that were not bistable. The results for springs with a 20° arm
angle were omitted since only 2 of them were bistable.

30° 30° 30°

30°

12.7 11.5 12.9 14.0 13.3

6.9 8.9 9.3 10.9 12.5

5.8 7.6 9.2 11.5

7.2 9.3

6.7

11.6 11.2 15.4 16.8 19.3

7.8 11.8 13.0 12.4 13.4

8.1 9.7 11.2 13.9

7.6 8.6 10.1

5.5 6.4

9.0 8.1 9.3 7.9 9.5

5.2 6.5 6.6 8.9 9.6

4.4 5.9 7.5 8.7

5.5 6.1

4.5

7.5 7.1 12.0 8.3 12.3

5.2 8.1 9.1 6.6 9.2

6.0 6.9 7.0 7.4

5.6 6.0 7.2

4.1 4.5

charge energy

40° 40° 40°

40°

output energy trigger energy (N)

12.1 11.0 13.1 14.6 16.0

2.6 5.2 6.7 9.9 14.1

0.8 2.3 4.8 7.7

2.0 4.2

1.1

8.6 13.9 17.1 23.2 21.2

2.6 6.3 10.4 11.9 11.4

2.0 4.5 7.7 13.0

1.3 4.5 6.4

0.4 1.3

7.0 7.0 7.0 7.5 7.5

5.0 5.5 6.0 7.0 7.0

4.5 6.5 7.5 7.0

6.0 6.5

7.0

7.0 7.0 8.0 8.5 9.0

6.0 6.5 7.5 8.0 9.0

6.0 7.0 8.0 8.5

6.0 7.0 8.0

6.0 7.0

1.85

1.65

1.45

1.25

1.05b
ri

d
g

e
 s

tr
e

n
g

th
 %

1.85

1.65

1.45

1.25

1.05b
ri

d
g

e
 s

tr
e

n
g

th
 %

1.85

1.65

1.45

1.25

1.05b
ri

d
g

e
 s

tr
e

n
g

th
 %

.85 .75 .65 .55 .45 .85 .75 .65 .55 .45 .85 .75 .65 .55 .45
bridge length %

.85 .75 .65 .55 .45 .85 .75 .65 .55 .45 bridge length %

stroke length (mm)

Figure 26: Raw results of our technical evaluation for charge,
output and trigger energy in N and stroke length in mm. Miss-

ing values indicate non-bistable springs.

All four measured values increase when increasing the arm
angle or the bridge strength, or when decreasing the length
of the bridge. The output energy was on average 73% of the
charge energy for 30° springs and 66% for 40° springs.

The difference between output energy and trigger energy is
greatest right when the springs start becoming bistable. The
ratio between the two decides the maximum possible fan-out
of the springs, thus a 2:1 ratio is necessary for bifurcation.
Choosing a higher trigger energy however increases the
fault-tolerance of the system with regards to unwanted acti-
vation, e.g., by dropping the object.

Stroke length is affected most by the arm angle, i.e., the
stroke length increases with the arm angle. Stroke is least af-
fected by the strength of the bridge.

In contrast, charge energy of the spring is affected most by
the strength of the bridge and least by the arm angle, which
can also be seen from Figure 26 in the rapid changes along
the y-axis.

Choosing appropriate values for each can tune the spring to-
ward a longer stroke or a higher output energy without
changes to its bistability. Note that these values apply to the
springs we tested with and that due to differences in manu-
facturing they might vary slightly.

EDITOR
To allow expert users to create and fabricate objects from
digital metamaterials, we implemented a specialized 3D
voxel-style editor, which is based on the editor for metamate-
rial mechanisms [10]. The main intent is to allow users to
draw signal paths and verify them within the editor (Figure
27). We support users by allowing them to enter simple logic
functions, which our editor converts to cell arrangements that
implement that function.

Figure 27: Our editor helps users create digital metamaterials.

While the editor is built to help users design digital met-
amaterials efficiently, knowledge about signals and logic re-
mains necessary, i.e., this editor is for expert users.

Walkthrough
Figure 28 illustrates how users create the door lock example
from Figure 1. (a) They first draw the signal line that evalu-
ates the upper 5 digits by dragging over the ground plane us-
ing our “draw signals” tool. (b) Then, using the same tool,
they draw signals perpendicular to the first signal line.
(c) When the two signals cross, the editor automatically

draws a gate cell. (d) They do the same for the lower row of
digits. (e) In this example, users manually configure the gate
cells using the “configure”, i.e., they change the initial state
of 5 gate cells from initially ‘pass’ to ‘block’ by clicking on
the respective gate cell. (f) The configured gate cells imple-
ment the key code for the lock.

Figure 28: (a) Users draw the signal routing using the “draw

signals” tool. (b) Once they cross an existing signal route,
(c) the editor automatically draws a gate cell. (d) After creat-

ing all cells for the digit evaluation, (e) users set the initial
states of the gate cells using the “configure” tool (f) to define

the key code.

Users continue by adding the evaluation line, the AND gate
and the output cells, which will move the bolts. Finally, they
model the analog door latch mechanism on top of the digital
metamaterial.

Figure 29 shows how users verify the signal transmission in
our custom editor. They first charge the cells by selecting the
“compute” tool. The editor visualizes charged cells by turn-
ing the signal lines blue. Clicking on a cell, as shown in Fig-
ure 29a, sets a signal off. The impulse runs through the cells,
being visualized in yellow at the currently active cell. After
the impulse has passed a cell, the signal path is shown in
black again, because the cell is back in its relaxed state
(Figure 29b). To verify the whole computational assembly,
users trigger the inputs first and then the evaluation signal,
as they do on the 3D printed object. They subsequently watch
if the signal runs all the way through to the door. If not, they
see where the signal stopped and can correct the error.

To help users create logic functions efficiently, e.g., by
avoiding the need for manual configuration of cells, we allow
users to input logic functions. Figure 30 shows an example,
where users enter the function ‘A & ~B & C & D & ~E’ and
click ‘synthesize’. Then, they indicate where the synthesized
cell arrangement shall be positioned by simply clicking on

the grid. Our editor automatically synthesizes the cells that
implement the entered logic functions.

Figure 29: Users can verify their logic and signal routing.

They first charge all springs, then (a) they click the inputs to
trigger the signal there, and lastly (b) they trigger the evalua-
tion line and find that the signal passes all the way through to

the latch.

Figure 30: Users enter the function ‘A & ~B & C & D & ~E’,
and indicates the location by clicking on the grid. Our editor
responds by automatically inserting the corresponding cells.

Implementation
We build on the metamaterial mechanisms voxel-style edi-
tor [10] and extend it to allow users to draw signal routes and
to input logic functions. Our extension of the editor is based
on a node.js javascript framework, using the three.js graphics
framework and WebGL for rendering the basic geometries.

Rendering of 3D-printable .stl files was done in modular hi-
erarchical OpenSCAD script files. The editor simply exports
the cell geometries as OpenSCAD script commands to render
a cell with the specific parameters.

Drawing signal paths
Drawing with signal paths is realized through a freeform line
tool that places appropriately connected cells following the
cursor. We use a pathfinding library for 3D1 that provides the
A* pathfinding algorithm to simplify connecting cells via a
signal line by finding the shortest available path while cross-
ing existing signals where necessary.

1 https://github.com/schteppe/PathFinding3D.js
2 https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm

Synthesizing cell arrangements
To generate cell arrangements of minimal size that imple-
ment a user-defined logic function, we use a version of the
Espresso heuristic logic minimizer2.

The logic minimizer parses the user text input, minimizes the
described input function and returns it in its disjunctive nor-
mal form. This minimized DNF is parsed a second time by
our editor to identify its terms and literals, which are used to
create a very compact cell arrangement that forms a disjunc-
tion of minterm conjunctions. A minterm is a minimal con-
junction of the input literals that returns true. This means that
an array of signals representing the disjunctions of the func-
tion is run in parallel. All input variables of the function in-
tersect and potentially block these lines, forming conjunc-
tions along each of the parallel lines. The combined arrange-
ment implements the function as a whole. To choose the most
succinct cell representation of the function, we also minimize
the negated input function and negate its result again directly
on the cell level. The cell arrangement variant that requires
the least cells to implement the input function is constructed
and placed in the editor at the last user-selected cell location.

The logic minimizer runs in a separate python virtual envi-
ronment using the PyEDA3 library for electronic design au-
tomation. This python server is queried via HTTP requests
to a REST architecture and replies with minimized functions
to logic functions encoded in the request-URL.

CONCLUSIONS
We presented digital mechanical metamaterials. While (ana-
log) metamaterial mechanisms suffer from signal decay, dig-
ital metamaterials are not subject to such decay, allowing us
to create larger/more complex objects. Unlike solutions
based on sensors, actuators, and microcontrollers, our ap-
proach still is entirely mechanical.

We showed the design of bit cells, which are the key element
for the signal transmission. They contain bistable springs,
which have two states, the relaxed and tense state. We also
presented cells that allow for routing signals in 2D and 3D.
To employ simple computation, we showed gate cells. We
demonstrated our approach at the example of two prototypes:
a digital door lock without electronics and a configurable
plant pot. To help expert users create such digital metamate-
rials, we contribute an editor that allows for routing signals,
verifying them, and synthesizing cell arrangements from
user-defined logic functions.

For future work, we plan to explore cells that have the ability
to shear and transmit signals, which would allow us to
change the properties of every single cell within an object.

Acknowledgements
We want to thank David Lindlbauer, Pedro Lopes, Stefanie
Müller, and Willi Müller for their help and feedback.

3 http://pyeda.readthedocs.io/en/latest/index.html

REFERENCES
1. Jeffrey K. Anderson, Larry L. Howell, Jonathan W.

Wittwer, and Timothy W. McLain. 2006. Piezoresis-
tive sensing of bistable micro mechanism state. Journal
of Micromechanics and Microengineering 16.5 (2006):
943. http://dx.doi.org/10.1088/0960-1317/16/5/010

2. Moritz Bächer, Stelian Coros, and Bernhard Thom-
aszewski. 2015. LinkEdit: interactive linkage editing
using symbolic kinematics ACM Transactions on
Graphics 34, 4, Article 99 (July 2015), 8 pages.
http://dx.doi.org/10.1145/2766985

3. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga
Sorkine-Hornung. 2014. Spin-it: optimizing moment of
inertia for spinnable objects. ACM Transactions on
Graphics 33, 4.
http://dx.doi.org/10.1145/2601097.2601157

4. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy,
Hyunho Richard Lee, Hanspeter Pfister, Markus Gross,
and Wojciech Matusik. 2010. Design and fabrication of
materials with desired deformation behavior. ACM
Transactions on Graphics 29, 4, Article 63 (July 2010),
10 pages. http://dx.doi.org/10.1145/1778765.1778800

5. Marco Bucci, Luca Giancane, Raimondo Luzzi, and
Alessandro Trifiletti. 2006. Three-phase dual-rail pre-
charge logic. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pp. 232-
241. Springer Berlin Heidelberg, 2006.

6. Jacques Calì, Dan A. Calian, Cristina Amati, Rebecca
Kleinberger, Anthony Steed, Jan Kautz, and Tim Wey-
rich. 2012. 3D-printing of non-assembly, articulated
models. ACM Transactions on Graphics 31, 6, Article
130 (November 2012), 8 pages.
http://dx.doi.org/10.1145/2366145.2366149

7. Xiang 'Anthony' Chen, Jeeeun Kim, Jennifer Mankoff,
Tovi Grossman, Stelian Coros, and Scott E. Hudson.
2016. Reprise: A Design Tool for Specifying, Generat-
ing, and Customizing 3D Printable Adaptations on
Everyday Objects. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technol-
ogy (UIST '16). ACM, New York, NY, USA, 29-39.
DOI: https://doi.org/10.1145/2984511.2984512

8. Juan Carlos Álvarez Elipe, and Andrés Díaz Lantada.
2012. Comparative study of auxetic geometries by
means of computer-aided design and engineering.
Smart Materials and Structures 21.10 (2012): 105004.

9. Daniel Groeger, Elena Chong Loo, and Jürgen Steimle.
2016. HotFlex: Post-print Customization of 3D Prints
Using Embedded State Change. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '16). ACM, New York, NY, USA, 420-
432. DOI: https://doi.org/10.1145/2858036.2858191

10. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall,
Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro
Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016.

Metamaterial Mechanisms. In Proceedings of the an-
nual ACM symposium on User interface software and
technology (UIST '16). ACM, New York, NY, USA,
529-539. DOI:
https://doi.org/10.1145/2984511.2984540

11. Yuichiro Katsumoto, Satoru Tokuhisa, and Masa
Inakage. 2013. Ninja track: design of electronic toy
variable in shape and flexibility. In Proceedings of the
7th International Conference on Tangible, Embedded
and Embodied Interaction (TEI '13). ACM, New York,
NY, USA, 17-24.
http://dx.doi.org/10.1145/2460625.2460628

12. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei,
Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu,
Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-
last: strength to weight 3D printed objects. ACM Trans-
actions on Graphics 33, 4.
http://dx.doi.org/10.1145/2601097.2601168

13. Merkle, Ralph C. 1993. Two types of mechanical re-
versible logic. Nanotechnology 4.2 (1993): 114.

14. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Jo-
hannes Frohnhofen, and Patrick Baudisch. 2014. faB-
rickation: fast 3D printing of functional objects by inte-
grating construction kit building blocks. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '14). ACM, New York, NY,
USA, 3827-3834.
http://dx.doi.org/10.1145/2556288.2557005

15. Tom Mullin, S. Deschanel, Katia Bertoldi, and Mary C.
Boyce. 2007. Pattern transformation triggered by de-
formation. Physical review letters 99, no. 8 (2007):
084301.
http://dx.doi.org/10.1103/PhysRevLett.99.084301

16. Nadkarni, Neel, Chiara Daraio, and Dennis M.
Kochmann. 2014. Dynamics of periodic mechanical
structures containing bistable elastic elements: From
elastic to solitary wave propagation. Physical Review E
90.2 (2014): 023204.

17. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico
Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic
textures for additive fabrication. ACM Transactions on
Graphics 34, 4. http://dx.doi.org/10.1145/2766937

18. Jayson Paulose, Anne S. Meeussen, and Vincenzo Vi-
telli. 2015. Selective buckling via states of self-stress in
topological metamaterials. In Proceedings of the Na-
tional Academy of Sciences, 112(25), 7639-7644.

19. Huaishu Peng, François Guimbretière, James McCann,
and Scott Hudson. 2016. A 3D Printer for Interactive
Electromagnetic Devices. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology (UIST '16). ACM, New York, NY, USA,
553-562. DOI:
https://doi.org/10.1145/2984511.2984523

20. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and
Olga Sorkine-Hornung. 2013. Make it stand: balancing
shapes for 3D fabrication. ACM Transactions on
Graphics 32, 4.
http://dx.doi.org/10.1145/2461912.2461957

21. Jin Qiu, Jeffrey H. Lang, and Alexander H. Slocum.
2004. A curved-beam bistable mechanism. Journal of
microelectromechanical systems 13.2 (2004): 137-146.

22. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. RetroFab: A Design Tool
for Retrofitting Physical Interfaces using Actuators,
Sensors and 3D Printing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '16). ACM, New York, NY, USA, 409-
419. DOI: https://doi.org/10.1145/2858036.2858485

23. Jordan R. Raney, Neel Nadkarni, Chiara Daraio, Den-
nis M. Kochmann, Jennifer A. Lewis, and Katia Ber-
toldi. 2016. Stable propagation of mechanical signals in
soft media using stored elastic energy. In Proceedings
of the National Academy of Sciences (2016):
201604838.

24. Greg Saul, Manfred Lau, Jun Mitani, and Takeo Iga-
rashi. 2010. SketchChair: an all-in-one chair design
system for end users. In Proceedings of the fifth inter-
national conference on Tangible, embedded, and em-
bodied interaction (TEI '11). ACM, New York, NY,
USA, 73-80. DOI:
http://dx.doi.org/10.1145/1935701.1935717

25. Valkyrie Savage, Colin Chang, and Björn Hartmann.
2013. Sauron: embedded single-camera sensing of
printed physical user interfaces. In Proceedings of the
26th annual ACM symposium on User interface soft-
ware and technology (UIST '13). ACM, New York,
NY, USA, 447-456.
http://dx.doi.org/10.1145/2501988.2501992

26. Valkyrie Savage, Ryan Schmidt, Tovi Grossman,
George Fitzmaurice, and Björn Hartmann. 2014. A se-
ries of tubes: adding interactivity to 3D prints using in-
ternal pipes. In Proceedings of the 27th annual ACM
symposium on User interface software and technology

(UIST '14). ACM, New York, NY, USA, 3-12.
http://dx.doi.org/10.1145/2642918.2647374

27. Christian Schumacher, Bernd Bickel, Jan Rys, Steve
Marschner, Chiara Daraio, and Markus Gross. 2015.
Microstructures to control elasticity in 3D printing.
ACM Transactions on Graphics 34, 4.
http://dx.doi.org/10.1145/2766926

28. Three-state logic. https://en.wikipedia.org/wiki/Three-
state_logic#Tri-state_Buffer Retrieved on September
21st, 2016

29. Tatyana Vasilevitsky and Amit Zoran. 2016. Steel-
Sense: Integrating Machine Elements with Sensors by
Additive Manufacturing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '16). ACM, New York, NY, USA, 5731-5742.
http://dx.doi.org/10.1145/2858036.2858309

30. Kiril Vidimce, Alexandre Kaspar, Ye Wang, and
Wojciech Matusik. 2016. Foundry: Hierarchical Mate-
rial Design for Multi-Material Fabrication. In Proceed-
ings of the 29th Annual Symposium on User Interface
Software and Technology (UIST '16). ACM, New
York, NY, USA, 563-574. DOI:
https://doi.org/10.1145/2984511.2984516

31. Voxel8. http://www.voxel8.co/ Retrieved on Septem-
ber 21st, 2016

32. Christian Weichel, Manfred Lau, David Kim, Nicolas
Villar, and Hans W. Gellersen. 2014. MixFab: a
mixed-reality environment for personal fabrication. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '14). ACM, New
York, NY, USA, 3855-3864.
http://dx.doi.org/10.1145/2556288.2557090

33. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan
Poupyrev. 2012. Printed optics: 3D printing of embed-
ded optical elements for interactive devices. In Pro-
ceedings of the 25th annual ACM symposium on User
interface software and technology (UIST '12). ACM,
New York, NY, USA, 589-598.
http://dx.doi.org/10.1145/2380116.2380190

