
 

 

Digital Mechanical Metamaterials 
Alexandra Ion, Ludwig Wall, Robert Kovacs, and Patrick Baudisch 

Hasso Plattner Institute, Potsdam, Germany  
{firstname.lastname}@hpi.de 

 
ABSTRACT 
In this paper, we explore how to embody mechanical com-
putation into 3D printed objects, i.e., without electronic sen-
sors, actuators, or controllers typically used for this purpose. 
A key benefit of our approach is that the resulting objects can 
be 3D printed in one piece and thus do not require assembly. 
We are building on 3D printed cell structures, also known as 
metamaterials. We introduce a new type of cell that propa-
gates a digital mechanical signal using an embedded bistable 
spring. When triggered, the embedded spring discharges and 
the resulting impulse triggers one or more neighboring cells, 
resulting in signal propagation. We extend this basic mecha-
nism to implement simple logic functions. We demonstrate 
interactive objects based on this concept, such as a combina-
tion lock. We present a custom editor that allows users to 
model 3D objects, route signals, simulate signal flow, and 
synthesize cell patterns. 
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INTRODUCTION 
Personal fabrication machines, such as 3D printers, allow us-
ers to make custom objects. While early work on 3D printing 
revolved around designing the outside of such objects [24, 
32], recently researchers started exploring 3D printing as a 
means to design the inside of objects. Applications include 
moving objects’ centers of gravity so as to make them 
stand [20] or spin [1]. 

Pushing this further, researchers created objects that consist 
internally of a large number of 3D cells arranged on a regular 
grid [15]. Since each cell is designed to perform a specific 
deformation, objects that entirely consist of such cells liter-
ally offer thousands of degrees of freedom. Such structures 
are also known as metamaterials [18]. 

 
Figure 1: (a) This combination door lock is implemented as a 
digital mechanical metamaterial, i.e., a single block of material 
based on a regular grid of cells. It allows users to input a nu-
meric code, it processes the code, checks its correctness, and 
unlocks the latch. (b) Under the hood, the lock consists of an 
array of cells that transmit and process a mechanical signal.  

While metamaterials were initially understood as materials, 
we recently proposed to think of them as machines; such 
metamaterial mechanisms [10] consist of a single block of 
material, the cells of which play together in a well-defined 
way in order to achieve macroscopic movement. We used 
this principle previously to implement simple mechanical 
objects, such as a door latch (Figure 7). 

Such analog machines, however, are limited in terms of 
complexity. As forces are passed on from one cell to the next, 
they are damped and the activation energy dissipates, caus-
ing the mechanical “signal” to decay exponentially. This lim-
its the number of mechanisms that can be concatenated and 
therefore the complexity of the machine. 

In this paper, we explore how to extend this concept towards 
digital mechanisms. Combining metamaterial mecha-
nisms [10] with concepts from mechanical computing and 
mechanical signal propagation [16, 23], we introduce a new 
type of cell that propagates a digital mechanical signal, i.e., 
it counteracts signal decay and thus allows signals to pass 
through an arbitrary number of cells. We extend this basic 
mechanism to implement simple logic functions.  

To illustrate this concept, Figure 1 shows a combination lock 
implemented using digital metamaterials. The device offers 
ten digit buttons on the front. Users tap these buttons to enter 
their code, then press the ‘open’ button to unlock the door.  

 

 

 

 

 

 

Authors’ copy. 
 

Published in Proceedings of CHI 2017,  
May 06 – 11, 2017, Denver, CO, USA 



 

 

BASICS OF DIGITAL MECHANICAL METAMATERIALS 
Digital metamaterials are based on a new type of cell that 
propagates a mechanical signal reinforced by an embedded 
bistable spring.  

The bit cell is the main underlying mechanism  
Figure 2 shows the key element behind digital metamaterials, 
which we call bit cell. Bit cells contain a bistable spring, 
which allows them to take on two discrete states. Figure 2a 
shows the bit cell in its tense state. (b) When triggered, the 
spring discharges, causing the cell to switch from its tense 
state to its relaxed state.   

 
Figure 2: (a) When triggered, this bit cell changes its state 

from tense to (b) relaxed. 

As shown in Figure 3, bit cells feature an input port and out-
put port. A mechanical impulse that reaches the input port 
triggers the cell, which creates an impulse at the output port. 
Because discharging the spring releases mechanical energy, 
the impulse at the output port is larger than the required trig-
ger impulse at the input port. 

 
Figure 3: Bit cells offer an input and an output port. 

As illustrated by Figure 4, this allows us to concatenate bit 
cells in a way that allows cells to trigger their immediate 
neighbors, resulting in a simple signal propagation mecha-
nism similar to [23]. 

 
Figure 4: Concatenating bit cells creates a signal transmission. 
(a) Initially all bit cells are in their tense position. (b) Trigger-
ing the leftmost cell causes the signal to propagate through all 

cells from left to right. 

The combination lock example 
Bit cells and the resulting concept of signal propagation al-
low us to implement a hierarchy of digital mechanisms of 
increasing complexity. We discuss these logic functions and 
mechanisms in full detail later in this paper, as well as a sim-
ple manual recharge mechanism to set discharged springs 
back into their tense state. However, Figure 5 provides a 
rough overview of the different elements that implement the 
combination lock. 

 
Figure 5: Our door lock consists of 82 cells, which implement 
the signal transmisison, the evaluation of each digit input by 

the user, an AND gate, and one amplifier cell with a pre-
amplification step to move the blocking bolts sufficiently. 

(1) To input the code, users tap one of the digit buttons on 
the front, which changes the state of the digit evaluation 
cells. The device contains 10 of these—one for each possible 
digit. (2) When the user pushes the ‘open’ button, three sig-
nal transmission lines are set off simultaneously; two of 
which run through the digit evaluation units and (3) set the 
state of the AND gate. The AND gate evaluates the correct-
ness of the code by computing a logical AND the two rows 
of digits input by the user. The third signal transmission line 
runs from the bottom left towards the right, around the cor-
ner, and upwards where (4) the signal is bifurcated. This al-
lows triggering (5) a double-sized amplifier cell that actuates 
the bolts to unblock the door. 

Figure 6 shows a close-up of these bolts. (a) As long as the 
bolts are in place, they prevent the shearing cells in the mid-
dle from shearing, thereby blocking the door. (b) When the 
bolts are retracted, the shearing cells can shear and pushing 
down the handle retracts the latch—as discussed in [10]. This 
is where our digital metamaterials connect to the analog met-
amaterial door latch mechanism. 



 

 

 
Figure 6: We effectively lock the latch mechanism by stiffen-
ing the shearing area that enables it. We do so by inserting 

bolts. Once users entered the key code correctly, our lock sig-
nal retracts the bolt and enables the latch mechanism. 

CONTRIBUTION, BENEFITS & LIMITATIONS 
Our main contribution is the concept of digital mechanical 
metamaterials. They allow integrating computational abili-
ties into the structure of 3D printed objects. We provide a 
modular system consisting of digital cells (hardware) and an 
editor (software) that provides a toolkit to users, enabling 
them to create new digital mechanisms.  

While analog metamaterial mechanisms are subject to damp-
ing, which causes the mechanical “signal” to decay exponen-
tially and limits the number of ‘steps’ that can be performed, 
digital mechanical metamaterials enable transmitting signals 
through an arbitrary number of cells.  

When we contrast digital mechanical metamaterials to the 
traditional approach of augmenting objects with electronic 
microcontrollers, sensors, and actuators [26, 31], our ap-
proach results in an entirely mechanical solution and can be 
produced entirely using a 3D printer. However, since our ap-
proach lacks loops, clocks, and memory, our approach is lim-
ited to much simpler devices. 

RELATED WORK 
We build on previous work in interactive personal fabrica-
tion, mechanical metamaterials, and analog computers.  

Personal fabrication 
3D printers and other personal fabrication machines simplify 
the process for users to make custom objects. Besides print-
ing decorative object, users often create functional objects 
the functionality of which is determined by their external 
shape [32, 14, 7]. Integrating heating elements during the 
print process allows to change the shape after the fabrication 
process to adapt, e.g. to users’ bodies [9]. 

To fabricate mechanical assemblies, users can print the struc-
tural parts from rigid plastic (e.g., links, axles, bearings, 
gears, etc.) and assemble them to construct machines [2]. 
Such assemblies can also be printed in one process [6]. The 
usability of existing mechanical objects can be enhanced by 
fabricating additional handles or contraption using personal 
fabrication machines [7].  

To allow users to go beyond mechanical systems made on 
their personal fabrication machines, researchers proposed 

techniques to integrate sensors and microcontrollers into ob-
jects. They range from (capacitive) position sensing [11, 29, 
26] to sensing light beams for detecting user interaction [33], 
to complex systems like integrating a camera to track mark-
ers [25]. Adding sensors to 3D printed parts after they were 
fabricated even enables users to make adaptations to their 
everyday objects and to effectively customize the way they, 
for example, interact with their toaster [22]. Peng et al. re-
cently demonstrated the idea of 3D printing motors, which 
allows fabricating arbitrary objects with integrated motors in 
the same process, enabling complex interactive objects with 
actuation capabilities [19]. 

While complex tasks, such as image processing are not pos-
sible in purely mechanical systems, we argue that we can in-
tegrate mechanical and simple information processing capa-
bilities within a 3D printed object to alter its properties. To 
do so, we design the internal structure of 3D printed objects. 

Designing the internal structure 
Researchers in HCI and computer graphics started to alter the 
internal structure of 3D printed objects to, e.g., optimize their 
strength-to-weight ratio [12], to move their center of gravity 
in order to balance objects [20], or to allow arbitrary shapes 
to spin [3]. Vidimce et al. recently proposed a system that 
allows users to create and edit the internal structure and ma-
terial distribution of 3D printed objects [30]. 

Mechanical metamaterials 
Metamaterials are “artificial structures with mechanical 
properties that are defined by their usually repetitive cell pat-
terns, rather than the material they are made of [18]. Met-
amaterials consist of large numbers of 3D cells organized on 
a regular grid. Since each cell can be designed to deform in 
a specific way [17, 27], they literally offer thousands of de-
grees of freedom.  

Based on this concept, researchers have created objects with 
unusual behavior, such as objects that collapse abruptly 
when compressed [15], that shrink in two dimensions upon 
one-dimensional compression [8], or objects that combine 
layers of different degrees of stiffness (i.e., soft and hard 
cells) in order to emulate different materials, such as leather 
or felt [4]. 

However, metamaterials are usually seen as materials. 
In [10], we proposed thinking of metamaterials as machines 
instead. Figure 7 shows one of the objects we demon-
strated—a door latch implemented as a single part. 

 
Figure 7: Metamaterial mechanisms [10]. 



 

 

In this paper, we extend on the concept of metamaterial 
mechanisms by introducing the notion digital signal pro-
cessing, which allows us to produce more complex mecha-
nisms, such as the combination lock shown in Figure 1. Our 
hardware design is inspired by mechanical wave propagation 
using bistable springs [16, 23]. 

Mechanical logic systems  
Our work combines metamaterials with concepts from me-
chanical computing. Since we use bistable springs for storing 
energy, we build our logic based on three-state logic [28], 
which assumes the additional output state ‘high impedance’. 
This allows us to distinguish a cell being in its tense state 
from when it is in its relaxed state.  

One approach to implement mechanical logic systems is dual 
rail logic [5]. It duplicates the signal path to provide a distinct 
0-signal. However, this comes at the cost of space. Rod logic 
presents an interesting system that can scale to nanotechnol-
ogy [13]. It is based on rods that can let signals pass, or block 
them. We build our signal transmission on this work.  

ROUTING SIGNALS BASED ON CELLS 
In this and the following section, we now show the individual 
cells that implement the combination door lock we showed 
in Figure 5. We begin with the cell types that allow us to 
route signals through 3D objects. We already looked at signal 
propagation along a straight line (Figure 4); in this section, 
we demonstrate how to route signals around corners, across 
other signal lines, and how to bifurcate signals.  

Routing signals is important because 3D printed objects can 
have arbitrary shape and routing allows transmitting a signal 
from where it emerges to where the information is needed. 
For the door lock, for example, we route users input from the 
digit inputs to the door latch mechanism—which is located 
elsewhere in our object. 

The more specialized routing cells are all based on bit cells. 
However, we position their output ports to be oriented to-
wards the neighbor cell we want to trigger. So while the bit 
cells in Figure 4 feature an output port on the side opposite 
to the input port, the cell shown in Figure 8 redirects the sig-
nal by 90° by adding a beam to the arm of our bistable spring. 
This beam rotates with the arm of the spring, allowing it to 
tap the input port of the rotated cell on the top right. 

 
Figure 8: We use a new type of output port to redirect the sig-
nal by 90°. We exploit the rotational movement of the spring 

and attach a beam that taps its neighboring cell. 

As illustrated by Figure 9, we can route signals in 3 dimen-
sions by concatenating multiple such mechanisms. Here we 
route the signal from the x/y plane to the x/z plane to the y/z 
plane.  

 
Figure 9: (a) Rotating the receiving cell allows us to redirect 

signals from one plane to another. (b) Concatenating three as-
semblies allows us to route signals in 3D.  

Figure 10 shows a specialized three-cell mechanism that al-
lows two signals to pass each other in minimal space. We use 
a crossbar that reaches from the output port of the left cell to 
the input port of the right cell that spans across the middle 
cell. 

 
Figure 10: We cross signals by running a crossbar across an-

other cell. 

Figure 11 shows two mechanisms that bifurcate signals. The 
design shown in (a) triggers two parallel signal lines. The de-
sign shown in (b) triggers two signal lines oriented in oppo-
site directions. Both designs exploit the fact that our bistable 
springs require less energy to be triggered than they output, 
which allows triggering two cells from one.  

 

Figure 11: We can bifurcate signals (a) in a parallel manner or 
(b) let the two signals run in opposite directions.  

Figure 12 shows how we merge two signals. This is an inter-
esting construct, because it implements an OR gate. 



 

 

 
Figure 12: We use the opposite assembly to merge signal as we 

did to bifurcate them. This implements an OR gate. 

LOGIC FUNCTIONS 
To implement logic functions, we need to go beyond merely 
transmitting signals to also evaluating signals, which we 
achieve by blocking them. In the combination lock from Fig-
ure 5, we block signals for wrong digit inputs so that the door 
stays blocked. Later in this section, we present cell arrange-
ments that implement basic logic, such as AND or NAND. 

Blocking signals using gate cells 
To allow for asynchronous input, we have designed cells ca-
pable of storing the first input that reaches them and do not 
act until the last signal has been received. We call these cells 
gate cells. Our approach is based on rod logic [13].  

As illustrated by Figure 13a these cells work by placing a 
“blocker” across their neighboring cell. When the cell on the 
right is triggered before the cell on the left, the blocker is 
aligned with the output port of the right cell so that it cannot 
pass and signal is blocked. However, triggering the left cell, 
as shown in Figure 13b, moves the blocker out of the way 
and the signal can pass through. The position of the blocker 
can also be defined to initially let signals through and only 
after actuation to block signals, as shown in Figure 13cd. 

a b

c d

 
Figure 13: Gate cells validate signals and can be configures to 
block signals (a-b) or let signals pass (c-d) in their tense state. 

Figure 14 shows the design of the two cells that form the gate 
cell. Each crossbar has a blocker attached on its underside.  

 
Figure 14: We position a blocking element that is intended to 

either block the signal output or let it pass. 

Logic functions based on gate cells 
We can concatenate multiple gate cells to create combina-
tional logic functions. Figure 15 uses simplified symbols to 
illustrate how the positions of the blockers are configured to 
implement the function A  B  C  D  E. The positive 
input cells A, C, and D need to be triggered to move the 
blocker out of the way and let the signal pass. The negated 
inputs B and E are implemented by positioning the blocker 
so that they let the signal pass when they are not triggered 
and block the signal otherwise. 

A B C D E

a

b

relaxed tense  
Figure 15: (a) When all inputs are tense, the signal cannot 
pass. (b) Triggering the correct inputs, here A, C, and D, 

moves the blockers so that the signal can pass. 

If we rename the inputs of the logic function that is shown in 
Figure 15 from AE to 04, it implements a 5-digit code 
evaluation. To implement the combination lock with 10 dig-
its, we add a second row of inputs. Now we have two logic 
functions (one in each row), which both need to be correct, 
thus we add an AND gate. Figure 16 illustrates that the key 
code is ‘0 2 3 8’.  

Again, we use our gate cells to employ the AND gate. Each 
code evaluation row has a gate cell at the end. Only if all the 
inputs of the corresponding row were correct, the blocker is 
moved out of the way for a third signal to pass, the evaluation 
signal.  

1 2 3 40

6 7 8 95

evaluation
signal

AND gate

 
Figure 16: We add an AND gate to validate the two rows that 

yield the 10-digit. 



 

 

Combinational logic using an evaluation signal 
Our implementation of the AND gate has three inputs, 
namely two values and one additional evaluation signal. We 
add this additional signal because our mechanical computa-
tion is fundamentally different from electronic circuits, yet 
adding only one single signal allows us to implement any 
Boolean predicate without any electronics.  

A ’signal’ within our system is not an applied voltage, but an 
impulse, i.e., a mechanical force within the object. This im-
pulse changes the system state by changing physical proper-
ties of the material, such as the position of the blockers. Since 
we block invalid signals, the output of gate cells is no signal 
instead of a 0-signal (logical low). However, not receiving a 
signal is indistinguishable from a dormant system. This 
means that we cannot provide an 0-signal that can serve as 
an input to the next gate, as in classical electronic circuits. 

Despite this, we are still able to employ combinational logic 
within our materials. The most space efficient way is to inte-
grate the inversion into logic functions, e.g., by using a NOR 
instead of an OR. Figure 17 illustrates a selection of logic 
gates implemented with our digital cells. Note that we show 
a different OR gate compared to the one shown in Figure 12. 
The one shown here uses the general-purpose assembly that 
is also used in the NOT and NAND gate.  

We add the additional evaluation signal as a second compu-
tation step. After the inputs are provided to the system, we 
send a signal off that evaluates the inputs in order to produce 
output. Independent of the complexity of the logic, only one 
single evaluation signal is necessary, since it can be furcated, 
merged, and routed through the material. Race conditions 
within operations can be resolved by adapting the length of 
signal paths. 
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Figure 17: Only one additional signal allows us to implement 
combinational logic, despite not having a traditional 0-signal. 

AMPLIFYING THE OUTPUT 
While the cells that implement the signal transmission can be 
arbitrarily small, the output cells that move material to 
change the material properties might need to produce a cer-
tain amount of movement or force. 

In the example of the door lock, we need to move the bolts 
sufficiently far into the door latch’s structure to stiffen it. We 
use what we call an amplifier cell, which is inspired by the 
metaphor of operational amplifiers in the electronics domain. 
Such an amplifier cell, as shown in Figure 18, is a cell that is 
doubled in size. This allows us to add a larger spring to pro-
duce more stroke length. 

 

Figure 18: We amplify the stroke length of our output by go-
ing from small cells to a double-sized cell.  

To transition from small cells to bigger cells, we bifurcate 
the signal. This gives us the energy of two cells, which to-
gether trigger the spring within the amplifier cell. In our door 
lock example, our 30 mm amplifier cell moves the bolts by 
6 mm as compared to the stroke length of 3 mm of the 15 mm 
bit cells. 

RECHARGING 
After the springs were triggered and they are in their relaxed 
state, they need to be reset to their tense state before the com-
putation can be run again. To do so, we designed a small lid 
on top of each cell, which uses the cell’s third dimension to 
recharge the spring. Figure 19 shows how as the lid is pushed 
down, the attached wedges move the spring backward to its 
tense position. We use an additional plate to push multiple 
recharge lids at the same time. This design enables one re-
charge action for every plane of computation. We added a 
small bump on the underside of the lid, which causes the lid 
to spring back upward in order to not hinder the signal trans-
mission between the cells.  

 
Figure 19: (a) Each cell features a lid with wedges, pushing it 

(b) recharges the spring underneath. 



 

 

ADDITIONAL APPLICATION EXAMPLE 
We see digital mechanical metamaterials being particularly 
useful for objects that have (1) many mechanical inputs (e.g., 
the code lock), and/or (2) many mechanical outputs (e.g., the 
following example of a plant pot), and (3) which are not fre-
quently reconfigured. For example, the density plant pot 
might be reconfigured when seasons change, or the door 
might be locked once a day. In contrast, for objects that re-
quire frequent updates (e.g., displays) or more complex pro-
gramming involving loops, etc., we recommend traditional 
electronics.  

Example: plant pot 
Figure 20 shows an example of a plant pot, where (a) users 
input the plant’s size (smalllarge) and its water demands 
(littlemuch) using sliders. This triggers the computation in 
the bottom layer of the pot, which determines (b) how many 
density cells will be closed. After users configured the pot’s 
density, (c) they place it into a cachepot with water. The den-
sity of the plant pot now determines how fast water can pass 
through to the plant.  

 
Figure 20: We implement a plant pot that changes its density 

based on user input of the plant’s size and water demands.  
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Figure 21: The weighted computation of the plant pot’s den-
sity ensures that small plants get enough water by preventing 

some density cells from closing. The numbers indicate how 
many density cells are open for each parameter combination. 

We use gate cells to change the weight of the parameters of 
the plant pot example. Figure 21 shows that by simply plac-
ing gate cells along the diagonal, we give more weight to the 
low values of the parameters. Since the gate cells prevent the 
signal from passing through, they prevent all density cells 
from closing, so that even for a small plant with little water 
demand the plant pot’s permeability is 25% (3 out of 12 den-
sity cell rows remain open). 

FABRICATION OF CELLS 
We print our prototypes from the commonly available fila-
ments ABS and PLA. While our cells are designed to be 
printed in an assembled state, we tend to print the parts of 
our prototypes separately. This allows us to print all elements 
without support material, which tends to be faster than the 
single-part design that requires dissolving the support mate-
rial. We printed the springs from PLA using the Ulti-
maker 2+ 3D printer, and the frames that hold the springs 
from ABS on our Dimension SST 1200es. Our cell size is 
15 mm for all our prototypes with a printed spring thickness 
of 0.4 mm. 

The cell shown in Figure 22 is printed in an assembled state. 
We had it made at shapeways using their “frosted detail plas-
tic” material, which is a UV cured acrylic polymer that is 
printed using the MultiJet Modeling process.  

 
Figure 22: A cell printed fully assembled using shapeways’ 

“frosted detail plastic” material.  

We empirically tested how the cells miniaturize while retain-
ing the same stress values using Autodesk Fusion’s simula-
tion. The results showed that reducing the spring thickness 
to ½ allows it to be shortened to ¼ of its length, i.e., to 1 64ൗ  of 
the cell volume. For example, a 0.2 mm thick spring allows 
for a cell size of 3.75 mm, which is a matter of printer reso-
lution. 

BISTABLE SPRING DESIGN 
The bistable spring in our cells differs from a typical bistable 
spring that is shown in Figure 23b, which is a simple pre-
bent beam that is fixed within rigid walls [21]. However, 
such designs have very high width-to-length ratios, which do 
not utilize the space within a rotation-invariant cubic cell 
well. 

a b

 
Figure 23: (a) The spring we use in our bit cells is longer and 

thus weaker than (b) conventional bistable springs. Or, for the 
same force, our cells produce more stroke length. 



 

 

Figure 23 illustrates that our spring design includes an addi-
tional ‘loop’, which prolongs the beam and therefore makes 
it weaker, i.e., it requires less force to be triggered and 
charged. We measured 45% less force required to charge our 
type of spring compared to the conventional spring. Another 
way to view it is that our longer springs produce more output 
length (by 23% according our measurements) while requir-
ing similar force.  

Note that our cells incorporate two connected springs. This 
is a common technique [21] for increasing the stability of bi-
stable springs during the so-called ‘snap-through’, i.e., the 
point where the spring is compressed the most as it is forced 
to its other second position.  

TECHNICAL EVALUATION 
The geometry of our spring allows us to make limited 
changes in stroke length and force by varying the spring pa-
rameters. For example, we used slightly stronger springs in 
the plant pot example to compensate for the higher density 
of water. While the output of bit cells usually needs to be 
only strong and far enough to trigger the neighbor cell, the 
output cells may have to meet specific requirements in terms 
of amount of force or stroke length. 

Our evaluation informs the geometrical spring parameters 
for achieving bistability and the maximum possible fan-out 
of a cell, i.e., how many cells can be triggered by one single 
cell. 

Independent variables: We compared a total of 75 springs of 
our design where we varied three parameters independently: 
(1) the arm angle, (2) the length of the bent bridge in the mid-
dle, and (3) the strength of the bridge, varied trough changing 
its buckling magnitude and its thickness concurrently. We 
varied the values for the bridge strength from 1.05 times the 
normal spring thickness to 1.85 times, and a buckle distance 
from 8% of the bridge length to 40%. The spring thickness is 
limited by the 3D printer’s resolution; we use 0.18 mm. 
Bridge length values ranged from 45% to 85% the total dis-
tance between the walls. We tested these values for 20°, 30° 
and 40° arm angles. This yields 25 springs for each arm an-
gle. 

arm angle buckle

length

thickness

 
Figure 24: We vary the parameters of bridge length and 

bridge strength for three different arm angles each. We meas-
ure the stroke length and the forces for charging and trigger-

ing the springs, as well as their output energy. 

Dependent variables: We measured (1) the force it takes to 
push a spring to its tense position, (2) the force necessary to 
trigger the spring, (3) its stroke length, and (4) the force it 
outputs when triggered.  

Test setup: Figure 25 shows our test setup. We placed a ruler 
(error 0.5 mm) under the spring to measure the stroke length. 
We used a force gauge with an error of 0.05 N, which was 
constrained to linear movement centered to the spring and 
precisely moved by a threaded rod. We pushed the force 
gauge against the spring to measure the charge energy, we 
released the pressure while slowly moving the force gauge 
backward to measure the output energy, and we measured 
the trigger energy by pushing the rotated spring. 

 
Figure 25: We measure the forces using a force gauge (error 
0.05 N), and the stroke length using a ruler (error 0.5 mm). 

Results 
Figure 26 shows charge, output, and trigger energy and 
stroke lengths for 50 springs. Empty fields denote springs 
that were not bistable. The results for springs with a 20° arm 
angle were omitted since only 2 of them were bistable.  
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Figure 26: Raw results of our technical evaluation for charge, 
output and trigger energy in N and stroke length in mm. Miss-

ing values indicate non-bistable springs. 

All four measured values increase when increasing the arm 
angle or the bridge strength, or when decreasing the length 
of the bridge. The output energy was on average 73% of the 
charge energy for 30° springs and 66% for 40° springs.  



 

 

The difference between output energy and trigger energy is 
greatest right when the springs start becoming bistable. The 
ratio between the two decides the maximum possible fan-out 
of the springs, thus a 2:1 ratio is necessary for bifurcation. 
Choosing a higher trigger energy however increases the 
fault-tolerance of the system with regards to unwanted acti-
vation, e.g., by dropping the object.  

Stroke length is affected most by the arm angle, i.e., the 
stroke length increases with the arm angle. Stroke is least af-
fected by the strength of the bridge.  

In contrast, charge energy of the spring is affected most by 
the strength of the bridge and least by the arm angle, which 
can also be seen from Figure 26 in the rapid changes along 
the y-axis.  

Choosing appropriate values for each can tune the spring to-
ward a longer stroke or a higher output energy without 
changes to its bistability. Note that these values apply to the 
springs we tested with and that due to differences in manu-
facturing they might vary slightly. 

EDITOR 
To allow expert users to create and fabricate objects from 
digital metamaterials, we implemented a specialized 3D 
voxel-style editor, which is based on the editor for metamate-
rial mechanisms [10]. The main intent is to allow users to 
draw signal paths and verify them within the editor (Figure 
27). We support users by allowing them to enter simple logic 
functions, which our editor converts to cell arrangements that 
implement that function. 

 
Figure 27: Our editor helps users create digital metamaterials. 

While the editor is built to help users design digital met-
amaterials efficiently, knowledge about signals and logic re-
mains necessary, i.e., this editor is for expert users.  

Walkthrough 
Figure 28 illustrates how users create the door lock example 
from Figure 1. (a) They first draw the signal line that evalu-
ates the upper 5 digits by dragging over the ground plane us-
ing our “draw signals” tool. (b) Then, using the same tool, 
they draw signals perpendicular to the first signal line. 
(c) When the two signals cross, the editor automatically 

draws a gate cell. (d) They do the same for the lower row of 
digits. (e) In this example, users manually configure the gate 
cells using the “configure”, i.e., they change the initial state 
of 5 gate cells from initially ‘pass’ to ‘block’ by clicking on 
the respective gate cell. (f) The configured gate cells imple-
ment the key code for the lock.  

 
Figure 28: (a) Users draw the signal routing using the “draw 

signals” tool. (b) Once they cross an existing signal route, 
(c) the editor automatically draws a gate cell. (d) After creat-

ing all cells for the digit evaluation, (e) users set the initial 
states of the gate cells using the “configure” tool (f) to define 

the key code. 

Users continue by adding the evaluation line, the AND gate 
and the output cells, which will move the bolts. Finally, they 
model the analog door latch mechanism on top of the digital 
metamaterial.  

Figure 29 shows how users verify the signal transmission in 
our custom editor. They first charge the cells by selecting the 
“compute” tool. The editor visualizes charged cells by turn-
ing the signal lines blue. Clicking on a cell, as shown in Fig-
ure 29a, sets a signal off. The impulse runs through the cells, 
being visualized in yellow at the currently active cell. After 
the impulse has passed a cell, the signal path is shown in 
black again, because the cell is back in its relaxed state 
(Figure 29b). To verify the whole computational assembly, 
users trigger the inputs first and then the evaluation signal, 
as they do on the 3D printed object. They subsequently watch 
if the signal runs all the way through to the door. If not, they 
see where the signal stopped and can correct the error.  

To help users create logic functions efficiently, e.g., by 
avoiding the need for manual configuration of cells, we allow 
users to input logic functions. Figure 30 shows an example, 
where users enter the function ‘A & ~B & C & D & ~E’ and 
click ‘synthesize’. Then, they indicate where the synthesized 
cell arrangement shall be positioned by simply clicking on 



 

 

the grid. Our editor automatically synthesizes the cells that 
implement the entered logic functions.  

 
Figure 29: Users can verify their logic and signal routing. 

They first charge all springs, then (a) they click the inputs to 
trigger the signal there, and lastly (b) they trigger the evalua-
tion line and find that the signal passes all the way through to 

the latch. 

 
Figure 30: Users enter the function ‘A & ~B & C & D & ~E’, 
and indicates the location by clicking on the grid. Our editor 
responds by automatically inserting the corresponding cells. 

Implementation 
We build on the metamaterial mechanisms voxel-style edi-
tor [10] and extend it to allow users to draw signal routes and 
to input logic functions. Our extension of the editor is based 
on a node.js javascript framework, using the three.js graphics 
framework and WebGL for rendering the basic geometries. 

Rendering of 3D-printable .stl files was done in modular hi-
erarchical OpenSCAD script files. The editor simply exports 
the cell geometries as OpenSCAD script commands to render 
a cell with the specific parameters. 

Drawing signal paths 
Drawing with signal paths is realized through a freeform line 
tool that places appropriately connected cells following the 
cursor. We use a pathfinding library for 3D1 that provides the 
A* pathfinding algorithm to simplify connecting cells via a 
signal line by finding the shortest available path while cross-
ing existing signals where necessary. 

                                                           
1 https://github.com/schteppe/PathFinding3D.js  
2 https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm  

Synthesizing cell arrangements 
To generate cell arrangements of minimal size that imple-
ment a user-defined logic function, we use a version of the 
Espresso heuristic logic minimizer2.  

The logic minimizer parses the user text input, minimizes the 
described input function and returns it in its disjunctive nor-
mal form. This minimized DNF is parsed a second time by 
our editor to identify its terms and literals, which are used to 
create a very compact cell arrangement that forms a disjunc-
tion of minterm conjunctions. A minterm is a minimal con-
junction of the input literals that returns true. This means that 
an array of signals representing the disjunctions of the func-
tion is run in parallel. All input variables of the function in-
tersect and potentially block these lines, forming conjunc-
tions along each of the parallel lines. The combined arrange-
ment implements the function as a whole. To choose the most 
succinct cell representation of the function, we also minimize 
the negated input function and negate its result again directly 
on the cell level. The cell arrangement variant that requires 
the least cells to implement the input function is constructed 
and placed in the editor at the last user-selected cell location. 

The logic minimizer runs in a separate python virtual envi-
ronment using the PyEDA3 library for electronic design au-
tomation. This python server is queried via HTTP requests 
to a REST architecture and replies with minimized functions 
to logic functions encoded in the request-URL. 

CONCLUSIONS 
We presented digital mechanical metamaterials. While (ana-
log) metamaterial mechanisms suffer from signal decay, dig-
ital metamaterials are not subject to such decay, allowing us 
to create larger/more complex objects. Unlike solutions 
based on sensors, actuators, and microcontrollers, our ap-
proach still is entirely mechanical.  

We showed the design of bit cells, which are the key element 
for the signal transmission. They contain bistable springs, 
which have two states, the relaxed and tense state. We also 
presented cells that allow for routing signals in 2D and 3D. 
To employ simple computation, we showed gate cells. We 
demonstrated our approach at the example of two prototypes: 
a digital door lock without electronics and a configurable 
plant pot. To help expert users create such digital metamate-
rials, we contribute an editor that allows for routing signals, 
verifying them, and synthesizing cell arrangements from 
user-defined logic functions. 

For future work, we plan to explore cells that have the ability 
to shear and transmit signals, which would allow us to 
change the properties of every single cell within an object. 
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